References
- S.J. Kulkarni, R.W. Tapre, S.V. Patil, M.B. Sawarkar, Adsorption
of phenol from wastewater in fluidized bed using coconut
shell activated carbon, Procedia Eng., 51 (2013) 300–307.
- F. Bettin, F. Cousseau, K. Martins, N.A. Boff, S. Zaccaria,
M.M. da Silveira, A.J.P. Dillon, Phenol removal by laccases
and other phenol oxidases of Pleurotus sajor-caju PS-2001 in
submerged cultivations and aqueous mixtures, J. Environ.
Manage., 236 (2019) 581–590.
- F. Wang, Y. Hu, C. Guo, W. Huang, C.-Z. Liu, Enhanced phenol
degradation in coking wastewater by immobilized laccase on
magnetic mesoporous silica nanoparticles in a magnetically
stabilized fluidized bed, Bioresour. Technol., 110 (2012)
120–124.
- G. Crini, E. Lichtfouse, Advantages and disadvantages of
techniques used for wastewater treatment, Environ. Chem.
Lett., 17 (2019) 145–155.
- A. Lante, A. Crapisi, A. Krastanov, P. Spettoli, Biodegradation of
phenols by laccase immobilised in a membrane reactor, Process
Biochem., 36 (2000) 51–58.
- S.H. Lin, C.S. Wang, Treatment of high-strength phenolic
wastewater by a new two-step method, J. Hazard. Mater.,
90 (2002) 205–216.
- X.-y. Bi, W. Peng, H. Jiang, H.-y. Xu, S.-j. Shi, J.-l. Huang,
Treatment of phenol wastewater by microwave-induced
ClO2-CuOx/Al2O3 catalytic oxidation process, J. Environ. Sci.,
19 (2007) 1510–1515.
- A. Katayama, Aerobic and anaerobic biodegradation of phenol
derivatives in various paddy soils, Sci. Total Environ., 367 (2006)
979–987.
- T. Viraraghavan, F.D.M. Alfaro, Adsorption of phenol from
wastewater by peat, fly ash and bentonite, J. Hazard. Mater.,
57 (1998) 59–70.
- L.Y. Jun, L.S. Yon, N. Mubarak, C.H. Bing, S. Pan, M.K. Danquah,
E. Abdullah, M. Khalid, An overview of immobilized enzyme
technologies for dye, phaenolic removal from wastewater,
J. Environ. Chem. Eng., 7 (2019) 102961, doi: 10.1016/j.
jece.2019.102961.
- K. Qian, A. Kumar, H. Zhang, D. Bellmer, R. Huhnke, Recent
advances in utilization of biochar, Renewable Sustainable
Energy Rev., 42 (2015) 1055–1064.
- X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, Z. Yang,
Application of biochar for the removal of pollutants from
aqueous solutions, Chemosphere, 125 (2015) 70–85.
- A. Givaudan, A. Effosse, D. Faure, P. Potier, M.-L. Bouillant,
R. Bally, Polyphenol oxidase in Azospirillum lipoferum isolated
from rice rhizosphere: evidence for laccase activity in nonmotile
strains of Azospirillum lipoferum, FEMS Microbiol.
Lett., 108 (1993) 205–210.
- S. Rangelov, J.A. Nicell, A model of the transient kinetics
of laccase-catalyzed oxidation of phenol at micromolar
concentrations, Biochem. Eng. J., 99 (2015) 1–15.
- P. Baldrian, Fungal laccases–occurrence and properties, FEMS
Microbiol. Rev., 30 (2006) 215–242.
- J. Yao, Q. Wang, Y. Wang, Y. Zhang, B. Zhang, H. Zhang,
Immobilization of laccase on chitosan-halloysite hybrid
porous microspheres for phenols removal, Desal. Water Treat.,
55 (2015) 1293–1301.
- N. Durán, M.A. Rosa, A. D’Annibale, L. Gianfreda, Applications
of laccases and tyrosinases (phenoloxidases) immobilized
on different supports: a review, Enzyme Microb. Technol.,
31 (2002) 907–931.
- J. Zhang, Z. Xu, C. Hui, Y. Zong, Removal of 2,4-dichlorophenol
by chitosan-immobilized laccase from Coriolus versicolor,
Biochem. Eng. J., 45 (2009) 54–59.
- C.-H. Kuo, Y.-C. Liu, C.-M.J. Chang, J.-H. Chen, C. Chang,
C.-J. Shieh, Optimum conditions for lipase immobilization
on chitosan-coated Fe3O4 nanoparticles, Carbohydr. Polym.,
87 (2012) 2538–2545.
- N. Li, Q. Xia, M. Niu, Q. Ping, H. Xiao, Immobilizing laccase
on different species wood biochar to remove the chlorinated
biphenyl in wastewater, Sci. Rep., 8 (2018) 13947, doi: 10.1038/
s41598-018-32013-0.
- P.M. Godwin, Y. Pan, H. Xiao, M.T. Afzal, Progress in preparation
and application of modified biochar for improving heavy metal
ion removal from wastewater, J. Bioresour. Bioprod., 4 (2019)
31–42.
- M. Kopecký, L. Kolář, P. Konvalina, O. Strunecký, F. Teodorescu,
P. Mráz, J. Peterka, R. Váchalová, J. Bernas, P. Bartoš, Modified
biochar—a tool for wastewater treatment, Energies, 13 (2020)
1–13.
- L. Beesley, M. Marmiroli, The immobilisation and retention of
soluble arsenic, cadmium and zinc by biochar, Environ. Pollut.,
159 (2011) 474–480.
- F.L. Braghiroli, H. Bouafif, A. Koubaa, Enhanced SO2 adsorption
and desorption on chemically and physically activated biochar
made from wood residues, Ind. Crop. Prod., 138 (2019) 111456,
doi: 10.1016/j.indcrop.2019.06.019.
- C. Jiang, S. Cui, Q. Han, P. Li, Q. Zhang, J. Song, M. Li,
Study on application of activated carbon in water treatment,
IOP Conf. Ser.: Earth Environ. Sci., 237 (2019) 022049, doi:
10.1088/1755-1315/237/2/022049.
- Q. Huang, S. Song, Z. Chen, B. Hu, J. Chen, X. Wang, Biocharbased
materials and their applications in removal of organic
contaminants from wastewater: state-of-the-art review,
Biochar, 1 (2019) 45–73.
- M.F. De Moraes, T.F. De Oliveira, J. Cuellar, G.L. Castiglioni,
Phenol degradation using adsorption methods, advanced
oxidative process (H2O2/UV) and H2O2/UV/activated carbon
coupling: influence of homogeneous and heterogeneous
phase, Desal. Water Treat., 100 (2017) 38–45.
- X. Ruan, Y. Sun, W. Du, Y. Tang, Q. Liu, Z. Zhang, W. Doherty,
R.L. Frost, G. Qian, D.C. Tsang, Formation, characteristics,
and applications of environmentally persistent free radicals
in biochars: a review, Bioresour. Technol., 281 (2019) 457–468.
- R.S. Singh, Engineered/designer biochar for the removal of
phosphate in water and wastewater, Sci. Total Environ., 616–617
(2017) 1242–1260.
- Y. Li, H. Xiao, M. Chen, Z. Song, Y. Zhao, Absorbents based on
maleic anhydride-modified cellulose fibers/diatomite for dye
removal, J. Mater. Sci., 49 (2014) 6696–6704.
- K. Zhang, S. Fischer, A. Geissler, E. Brendler, Analysis of
carboxylate groups in oxidized never-dried cellulose II
catalyzed by TEMPO and 4-acetamide-TEMPO, Carbohydr.
Polym., 87 (2012) 894–900.
- C. Eggert, U. Temp, K.-E. Eriksson, The ligninolytic system
of the white rot fungus Pycnoporus cinnabarinus: purification
and characterization of the laccase, Appl. Environ. Microbiol.,
62 (1996) 1151–1158.
- H. Yuan, L. Chen, F.F. Hong, M. Zhu, Evaluation of nanocellulose
carriers produced by four different bacterial strains for
laccase immobilization, Carbohydr. Polym., 196 (2018) 457–464.
- B. Wang, G. Yang, Q. Wang, L.A. Lucia, T. Jia, J. Chen, G. Fang,
Wet oxidation of activated carbon for enhanced adsorptive
removal of lignin from the prehydrolysis liquor of kraft-based
dissolving pulp production in an integrated forest biorefinery,
J. Bioresour. Bioprod., 2 (2017) 73–81.
- F. Wang, C. Guo, L.-r. Yang, C.-Z. Liu, Magnetic mesoporous
silica nanoparticles: fabrication and their laccase immobilization
performance, Bioresour. Technol., 101 (2010) 8931–8935.
- M.M. Bradford, A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing the
principle of protein-dye binding, Anal. Biochem., 72 (1976)
248–254.
- N.J. Kruger, The Bradford Method for Protein Quantitation,
J.M. Walker, Ed., The Protein Protocols Handbook, Springer,
2009, pp. 17–24.
- X. Wen, Z. Zeng, C. Du, D. Huang, G. Zeng, R. Xiao, C. Lai,
P. Xu, C. Zhang, J. Wan, Immobilized laccase on bentonitederived
mesoporous materials for removal of tetracycline,
Chemosphere, 222 (2019) 865–871.
- U. Andjelković, A. Milutinović-Nikolić, N. Jović-Jovičić,
P. Banković, T. Bajt, Z. Mojović, Z. Vujčić, D. Jovanović, Efficient
stabilization of Saccharomyces cerevisiae external invertase by
immobilisation on modified beidellite nanoclays, Food Chem.,
168 (2015) 262–269.
- E. Skoronski, D.H. Souza, C. Ely, F. Broilo, M. Fernandes,
A.F. Junior, M.G. Ghislandi, Immobilization of laccase
from Aspergillus oryzae on graphene nanosheets, Int. J. Biol.
Macromol., 99 (2017) 121–127.
- J. Yang, Y. Lin, X. Yang, T.B. Ng, X. Ye, J. Lin, Degradation
of tetracycline by immobilized laccase and the proposed
transformation pathway, J. Hazard. Mater., 322 (2017) 525–531.