References

  1. S.X. Wang, Y.X. Miao, J.A. Hao, J. Wang, Y.S. Zhang, Analysis on the technological advantages of domestic seawater, Appl. Mech. Mater., 3817 (2015) 692–695.
  2. T. Yu, Y.D. Wang, Z.H. Liu, J.X. Ma, Y. Jing, Recent advances in materials for deep removal of H2S, CIESC J., (2020), doi: 10.11949/0438-1157.20201063.
  3. L. Zhang, A. Hua, L.X. Zhang, The preparation of composite carrier by using diatomite and activated carbon for desulfurization in flue gas, Optoelectron. Adv. Mater. Rapid Commun., 10 (2016) 273–278.
  4. J.A. Arcibar-Orozco, A.A. Acosta-Herrera, J.R. Rangel-Mendez, Simultaneous desulfuration and denitrogenation of model diesel fuel by Fe-Mn microwave modified activated carbon: iron crystalline habit influence on adsorption capacity, J. Cleaner Prod., 218 (2019) 69–82.
  5. Z.R. Liu, J.H. Yu, L.F. Yang, Y. Dai, Y. Wang, L.M. Zhou, Preparation of Fe-loaded activated carbon and its adsorption property of U(VI) in aqueous solution, J. Radioanal. Nuclear Chem., 317 (2018) 1223–1233.
  6. G. De Falco, F. Montagnaro, M. Balsamo, A. Erto, F.A. Deorsola, L. Lisi, S. Cimino, Synergic effect of Zn and Cu oxides dispersed on activated carbon during reactive adsorption of H2S at room temperature, Microporous Mesoporous Mater., 257 (2018) 135–146.
  7. C. Yang, S. Yang, H.L. Fan, Y.S. Wang, S.G. Ju, Tuning the ZnO-activated carbon interaction through nitrogen modification for enhancing the H2S removal capacity, J. Colloid Interface Sci., 555 (2019) 548–557.
  8. J.B. Xu, W.Y. Dong, H.J. Wang, X. Huang, Adsorption characteristics of methyl mercaptan in odor by KMnO4 modified activated carbon, Chin. J. Environ. Eng., 14 (2019) 1570–1578.
  9. Q.L. Lu, Y.Q. Li, Advances in hydrothermal synthesis, modification and applications of MCM-41 molecular sieves, Mod. Chem. Ind., 39 (2019) 40–44.
  10. H. Chaudhuri, S. Dash, A.Sarkar, Fabrication of new synthetic routes for functionalised Si-MCM-41 materials as effective adsorbents for water remediation, Ind. Eng. Chem. Res., 55 (2016) 10084–10094.
  11. P.D. Du, N.T. Hieu, T.C. To, G.B. Long, D.Q. Khieu, Aminopropyl functionalised MCM-41: synthesis and application for adsorption of Pb(II) and Cd(II), Adv. Mater. Sci. Eng., 2019 (2019) 1–15, doi: 10.1155/2019/8573451.
  12. Y. Fu, Y. Huang, J.S. Hu, Preparation of chitosan/MCM-41-PAA nanocomposites and the adsorption behaviour of Hg(II) ions, R. Soc. Open Sci., 5 (2018) 171927, doi: 10.1098/rsos.171927.
  13. B. Zhang, T. Wu, D.J. Sun, NH2-MCM-41 supported on nitrogendoped graphene as bifunctional composites for removing phenol compounds: synergistic effect between catalytic degradation and adsorption, Carbon, 147 (2019) 312–322.
  14. V. Hulea, E. Huguet, C. Cammarano, A. Lacarriere, R. Durand, C. Leroi, R. Cadours, B. Coq, Conversion of methyl mercaptan and methanol to hydrocarbons over solid acid catalysts - a comparative study, Appl. Catal., B, 144 (2014) 547–553.
  15. P. Ghimire, L.P. Zhang, U.A. Kinga, Q.Y. Guo, Development of nickel-incorporated MCM-41-carbon composites and their application in nitrophenol reduction, J. Mater. Chem. A, 7 (2019) 9618–9628.
  16. Q. Geng, L.J. Wang, C. Yang, H.Y. Zhang, Y.R. Zhao, H.L. Fan, C. Huo, Room-temperature hydrogen sulfide removal with zinc oxide nanoparticle/molecular sieve prepared by melt infiltration, Fuel Process. Technol., 185 (2019) 26–37.
  17. E. Khaledyan, K. Alizadeh, Y. Mansourpanah, Synthesis of magnetic nanocomposite core–shell Fe3O4@MCM-41-NH2 and its application for removal of congo red from aqueous solutions, Iran. J. Sci. Technol. Trans. A Sci., 43 (2019) 801–811.
  18. C. Cara, E. Rombi, A. Ardu, Sub-micrometric MCM-41 particles as support to design efficient and regenerable maghemitebased sorbent for H2S removal, J. Nanosci. Nanotechnol., 19 (2019) 5035–5042.
  19. X.H. Wang, T.H. Sun, J. Yang, L. Zhao, J.P. Jia, Low-temperature H2S removal from gas streams with SBA-15 supported ZnO nanoparticles, Chem. Eng. J., 142 (2008) 48–55.
  20. H.S. Song, M.G. Park, S.J. Kwon, K.B. Yi, E. Croiset, Z.W. Chen, S.C. Nam, Hydrogen sulfide adsorption on nano-sized zinc oxide/reduced graphite oxide composite at ambient condition, Appl. Surf. Sci., 276 (2013) 646–652.
  21. F. Li, T. Lei, Y. Yang, Y.P. Zhang, G.H. Yang, Preparation of nano-CuO and its removal performance of H2S at room temperature, J. Mater. Eng., 43 (2015) 1–6.
  22. X. Hong, K. Tang, Preparation and adsorption denitrification of heteroatoms mesoporous molecular sieve Co-MCM-41, J. Fuel Chem. Technol., 43 (2015) 720–727.
  23. B.W. Yan, Quantitative Relation Study of Odorous Pollutants Based on Sensory Measurement and GC/MS, Harbin Institute of Technology, 2019.
  24. C.M. Liu, H. Dou, J.B. Jiang, Y. Gao, W.Q. Zhang, Study on waste gas emission characteristics and treatment effect of sewage treatment process of a pharmaceutical enterprise in Shijiazhuang City, Hebei J. Ind. Sci. Technol., 35 (2018) 363–369.
  25. J.M. Zhang, J. Liu, H.J. Li, G.P. Wang, H2O/Si ratio action in MCM-41 molecular sieve synthesis and MB adsorption capability, Ind. Water Treat., 38 (2018) 73–76.
  26. A. Peluso, N. Gargiulo, P. Aprea, F.P.D. Caputo, Nanoporous materials as H2S adsorbents for biogas purification: a review, Sep. Purif. Rev., 48 (2019) 79–89.
  27. K. Sehaspreet, P. Jai, K. Vikas, Single and binary adsorption of Zn(II) and Cr(VI) heavy metals onto synthesized silica-based MCM-41, Chemistry Select, 4 (2019) 2576–2584.
  28. F. Li, Y.P. Zhang, Y. Yang, J. Wei, B. Yan, Structure of activated carbon supported with nano-ZnO and its removal performance of H2S at room temperature, J. Chin. Ceram. Soc., 40 (2012) 800–805.