References

  1. N. Zhang, G.-L. Zang, C. Shi, H.-Q. Yu, G.-P. Sheng, A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: preparation, characterization, and application for Cu(II) removal, J. Hazard. Mater., 316 (2016) 11−18.
  2. J.J. Li, L.L. Xiao, S.L. Zheng, Y.C. Zhang, M. Luo, C. Tong, H.D. Xu, Y. Tan, J. Liu, O. Wang, F.H. Liu, A new insight into the strategy for methane production affected by conductive carbon cloth in wetland soil: beneficial to acetoclastic methanogenesis instead of CO2 reduction, Sci. Total Environ., 643 (2018) 1024−1030.
  3. S.R. Shukla, R.S. Pai, Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres, Bioresour. Technol., 96 (2005) 1430–1438.
  4. D.P. Facchi, A.L. Cazetta, E.A. Canesin, V.C. Almeida, E.G. Bonafé, M.J. Kipper, A.F. Martins, New magnetic chitosan/alginate/Fe3O4@SiO2 hydrogel composites applied for removal of Pb(II) ions from aqueous systems, Chem. Eng. J., 337 (2018) 595−608.
  5. J.O. Esalah, M.E. Weber, J.H. Vera, Removal of lead, cadmium and zinc from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate, Can. J. Chem., 78 (2000) 948–954.
  6. V. de A. Cardoso, A.G. de Souza, P.P.C. Sartoratto, L.M. Nunes, The ionic exchange process of cobalt, nickel and copper(II) in alkaline and acid-layered titanates, Colloids Surf., A, 248 (2004) 145–149.
  7. D. Buerge-Weirich, R. Hari, H. Xue, P. Behra, L. Sigg, Adsorption of Cu, Cd, and Ni on goethite in the presence of natural groundwater ligands, Environ. Technol., 36 (2002) 328–336.
  8. L. Xia, Z.H. Huang, L. Zhong, F.W. Xie, C.Y. Tang, C.P. Tsui, Bagasse cellulose grafted with an amino-terminated hyperbranched polymer for the removal of Cr(VI) from aqueous solution, Polymer, 10 (2018) 391−405.
  9. G. Xu, L. Wang, Y. Xie, M.L. Tao, W.Q. Zhang, Highly selective and efficient adsorption of Hg2+ by a recyclable aminophosphonic acid functionalized polyacrylonitrile fiber, J. Hazard. Mater., 344 (2018) 679−688
  10. I. Ali, M. Asim, T.A. Khan, Low cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manage., 113 (2012) 170–183.
  11. S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, A review of potentially low-cost sorbents for heavy metals, Water Res., 33 (1999) 2469–2479.
  12. H.O. Abugu, P.A.C. Okoye, V.I.E. Ajiwe, P.C. Oford, Preparation and characterisation of activated carbon from agrowastes peanut seed (African canarium) and palm kernel shell, Int. J. Innovative Res. Dev., 3 (2014) 13.
  13. S. Vitas, T. Keplinger, N. Reichholf, R. Figi, E. Cabane, Functional lignocellulosic material for the remediation of copper(II) ions from water: towards the design of a wood filter, J. Hazard. Mater., 355 (2018) 119−127.
  14. A. Saeed, M.W. Akhter, M. Iqbal, Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent, Sep. Purif. Technol., 45 (2005) 25–31.
  15. N.A.A. Babarinde, J.O. Babalola, R.A. Sanni, Biosorption of lead ions from aqueous solution by maize leaf, Int. J. Phys. Sci., 1 (2006) 23–26.
  16. M. Šćiban, M. Klašnja, Wood sawdust and wood originate materials as adsorbents for heavy metal ions, Holz als Roh- und Werkstoff, 62 (2004) 69–73.
  17. P.D. Johnson, M.A. Watson, J. Brown, I.A. Jefcoat, Peanut hull pellets as a single use sorbent for the capture of Cu(II) from wastewater, Waste Manage., 22 (2002) 471–480.
  18. H.O. Abugu, P.A.C. Okoye, V.I.E. Ajiwe, P.E. Omuku, U.C. Umeobika, Preparation and characterization of activated carbon produced from oil bean (Ugba or Ukpaka) and snail shell, J. Environ. Anal. Chem., 2 (2015) 165, doi: 10.4172/ 2380-2391.1000165.
  19. O.C. Ugwoke, B. Dauda, J.A. Ezugwu, H.O. Abugu, L.O. Alum, S.I. Eze, O.A. Odewole, Chromium adsorption using modified locust bean and maize husk, Der Pharma Chem., 12 (2020) 7–14.
  20. B. Chen, H. Zhao, S.J. Chen, F.X. Long, B.Q. Huang, B.Q. Yang, X.J. Pan, A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater, Chem. Eng. J., 356 (2019) 69−80.
  21. N. Supanchaiyamat, K. Jetsrisuparb, J.T.N. Knijnenburg, D.C.W. Tsang, A.J. Hunt, Lignin materials for adsorption: current trend, perspectives and opportunities, Bioresour. Technol., 272 (2019) 570−581.
  22. M. Sćiban, M. Klasnja, B. Skrbić, Modified softwood sawdust as adsorbent of heavy metal ions from water, J. Hazard. Mater., 136 (2006) 266–271.
  23. Q. Li, J.P. Zhai, W.Y. Zhang, M.M. Wang, J. Zhou, Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk, J. Hazard. Mater., 141 (2006) 163–167.
  24. C.R.T. Tarley, S.L.C. Ferreira, M.A.Z. Arruda, Use of modified rice husks as a natural solid adsorbent of trace metals: characterization and development of an on-line preconcentration system for cadmium and lead determined by FAAS, Microchem. J., 77 (2004) 163–175.
  25. K.J. Tiemann, G. Gamez, K. Dokken, J.G. Parsons, J.L. Gardea-Torresdey, Chemical modification and X-ray absorption studies for lead(II) binding by Medicago sativa (alfalfa) biomass, Microchem. J., 71 (2002) 287–293.
  26. K.S. Low, C.K. Lee, A.C. Leo, Removal of metals from electroplating wastes using banana pith, Bioresour. Technol., 51 (1995) 227–231.
  27. O. Karnitz Jr., L.V.A. Gurgel, J.C.P. de Melo, V.R. Botaro, T.M.S. Melo, R.P. de Freitas Gil, L.F. Gil, Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse, Bioresour. Technol., 98 (2007) 1291–1297.
  28. M.A. Ferro-García, J. Rivera-Utrilla, J. Rodriguez-Gordillo, I. Bautista-Toledo, Adsorption of zinc, cadmium, and copper on activated carbons obtained from agricultural by-products, Carbon, 26 (1988) 363–373.
  29. A.A. Olapade, O.A. Ajayi, I.A. Ajayi, Physical and chemical properties of Cassia sieberiana seeds, Int. Food Res. J., 21 (2014) 767–772.
  30. S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens Handlingar, 24 (1898) 1–39.
  31. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  32. Y.S. Ho, G. McKay, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng., 76 (1998) 822–827.
  33. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Am. Soc. Civ. Eng., 89 (1963) 31–60.
  34. A. Kapoor, R.T. Yang, Correlation of equilibrium adsorption data of condensible vapours on porous adsorbents, Gas Sep. Purif., 3 (1989) 187–192.
  35. D.W. Marquardt, An algorithm for least-squares estimation of non-linear parameters, J. Soc. Ind. Appl. Math., 11 (1963) 431–441.
  36. M.K. Miyittah, F.W. Tsyawo, K.K. Kumah, C.D. Stanley, J.E. Rechcigl, Suitability of two methods for determination of point of zero charge (PZC) of adsorbents in soils, Commun. Soil Sci. Plant Anal., 47 (2016) 101–111.
  37. G. Uehara, G. Gillman, The Mineralogy, Chemistry, and Physics of Tropical Soils with Variable Charge Clays, Westview Press Inc., Boulder, Colorado, 1981.
  38. B.Y. Nale, J.A. Kagbu, A. Uzairu, E.T. Nwankwere, S. Saidu, H. Musa, Kinetic and equilibrium studies of the adsorption of lead(II) and nickel(II) ions from aqueous solutions on activated carbon prepared from maize cob, Der Chem. Sin., 3 (2012) 302–312.
  39. J.Y. Zheng, Q.L. Zhao, Z.F. Ye, Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste, Appl. Surf. Sci. J., 299 (2014) 86–91.
  40. D.V. Bojić, M.S. Ranđelović, A.R. Zarubica, J.Z. Mitrović, M.D. Radović, M.M. Purenović, A.L. Bojić, Comparison of new biosorbents based on chemically modified Lagenaria vulgaris shell, Desal. Water Treat., 51 (2013) 6871–6881.
  41. J.J. Liu, X.C. Wang, B. Fan, Characteristics of PAHs adsorption on inorganic particles and activated sludge in domestic wastewater treatment, Bioresour. Technol., 102 (2011) 5305–5311.
  42. X. Hu, J.C. Cao, H.Y. Yang, D.H. Li, Y. Qiao, J.L. Zhao, Z.X. Zhang, L. Huang, Pb2+ biosorption from aqueous solutions by live and dead biosorbents of the hydrocarbon-degrading strain Rhodococcus sp. HX-2, PLoS One, 15 (2020) e0226557, https://doi.org/10.1371/journal.pone.0226557.
  43. J.D. Roberts, M.C. Caserio, Basic Principles of Organic Chemistry and Modern Organic Chemistry, California Institute of Technology, W.A. Benjamin, Inc. , Menlo Park, CA, 1977.
  44. P. Kumar Jha, V. Kumar Jha, Iodine adsorption characteristics of activated carbon obtained from Spinacia oleracea (spinach) leaves, Mongolian J. Chem., 21 (2020) 1–11, doi: 10.5564/mjc. v21i47.1249.
  45. G. Kirova, Z. Velkova, V. Gochev, Copper(II) removal by heat inactivated Streptomyces fradiae biomass: surface chemistry characterization of the biosorbent, J. BioSci. Biotech., (2012) 77–82.
  46. H.R. Hesas, A. Arami-Niya, W.M.A.W. Daud, J.N. Sahu, Preparation and characterization of activated carbon from apple waste by microwave-assisted phosphoric acid activation: application in methylene blue adsorption, Bioresources, 8 (2013) 2950–2966.
  47. G.F. de Oliveira, R.C. de Andrade, M.A.G. Trindade, H.M.C. Andrade, CT. de Carvalho, Thermogravimetric and spectroscopic study (TG–DTA/FTIR) of activated carbon from the renewable biomass source babassu, Quim. Nova, 40 (2017) 284–292.
  48. A. Bazan, P. Nowicki, P. Półrolniczak, R. Pietrzak, Thermal analysis of activated carbon obtained from residue after supercritical extraction of hops, J. Therm. Anal. Calorim., 125 (2016) 1199–1204.
  49. V.K. Gupta, M. Gupta, S. Sharma, Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste, Water Resour., 35 (2001) 1125–1134.
  50. B. Das, N.K. Mondal, Calcareous soil as a new adsorbent to remove lead from aqueous solution: equilibrium, kinetic and thermodynamic study, Univ. J. Environ. Res. Technol., 1 (2011) 515–530.
  51. M.E. Argun, S. Dursun, C. Ozdemir, M. Karatas. Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics, J. Hazard. Mater., 141 (2007) 77–85.
  52. S. Swapna Priya, K.V. Radha, Equilibrium, isotherm, kinetic and thermodynamic adsorption studies of tetracycline hydrochloride onto commercial grade granular activated carbon, Int. J. Pharm. Sci., 71 (2014) 42–51.
  53. S. Rangabhashiyam, N. Anu, M.S. Giri Nandagopal, N. Selvaraju, Relevance of isotherm models in biosorption of pollutants by agricultural byproducts, J. Environ. Chem. Eng., 6 (2014) 2398–2414.
  54. A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ onto phosphoric acid modified rice husk, J. Appl. Chem., 3 (2012) 2278–5736.
  55. J. Sreńscek-Nazzal, U. Narkiewicz, A.W. Morawski, R. Wróbel, A. Gęsikiewicz-Puchalska, B. Michalkiewicz, Modification of commercial activated carbons for CO2 adsorption, Acta Phys. Pol. A, 129 (2016) 394–401.
  56. B. Singha, S.K. Das, Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes, Colloids Surf., B, 107 (2013) 97–106.
  57. E. Cristiano, Y.-J. Hu, M. Sigfried, D. Kaplan, H. Nitsche, A comparison of point of zero charge measurement methodology, Clays Clay Miner., 59 (2011) 107–115.
  58. M. Kosmulski, Attempt to determine pristine points of zero charge of Nb2O5, Ta2O5, and HfO2, Langmuir, 13 (1997) 6315–6320.
  59. J.W. Moon, H.L. Lee, J.D. Kim, G.D. Kim, D.A. Lee, H.W. Lee, Preparation of ZrO2-coated NiO powder using surface-induced coating, Mater. Lett., 38 (1999) 214–220.
  60. T. Mahmood, M.T. Saddique, A. Naeem, P. Westerhoff, S. Mustafa, A. Alum, Comparison of different methods for the point of zero charge determination of NiO, Ind. Eng. Chem. Res., 50 (2011) 10017–10023.
  61. K. Mohanty, M. Jha, B.C. Meikap, M.N. Biswas, Biosorption of Cr(VI) from aqueous solutions by Eichhornia crassipes, Chem. Eng. J., 117 (2006) 71–77.