References
- N. Zhang, G.-L. Zang, C. Shi, H.-Q. Yu, G.-P. Sheng, A novel
adsorbent TEMPO-mediated oxidized cellulose nanofibrils
modified with PEI: preparation, characterization, and
application for Cu(II) removal, J. Hazard. Mater., 316 (2016)
11−18.
- J.J. Li, L.L. Xiao, S.L. Zheng, Y.C. Zhang, M. Luo, C. Tong,
H.D. Xu, Y. Tan, J. Liu, O. Wang, F.H. Liu, A new insight into
the strategy for methane production affected by conductive
carbon cloth in wetland soil: beneficial to acetoclastic
methanogenesis instead of CO2 reduction, Sci. Total Environ.,
643 (2018) 1024−1030.
- S.R. Shukla, R.S. Pai, Adsorption of Cu(II), Ni(II) and Zn(II) on
modified jute fibres, Bioresour. Technol., 96 (2005) 1430–1438.
- D.P. Facchi, A.L. Cazetta, E.A. Canesin, V.C. Almeida,
E.G. Bonafé, M.J. Kipper, A.F. Martins, New magnetic chitosan/alginate/Fe3O4@SiO2 hydrogel composites applied for removal
of Pb(II) ions from aqueous systems, Chem. Eng. J., 337 (2018)
595−608.
- J.O. Esalah, M.E. Weber, J.H. Vera, Removal of lead, cadmium
and zinc from aqueous solutions by precipitation with sodium
di-(n-octyl) phosphinate, Can. J. Chem., 78 (2000) 948–954.
- V. de A. Cardoso, A.G. de Souza, P.P.C. Sartoratto, L.M. Nunes,
The ionic exchange process of cobalt, nickel and copper(II) in
alkaline and acid-layered titanates, Colloids Surf., A, 248 (2004)
145–149.
- D. Buerge-Weirich, R. Hari, H. Xue, P. Behra, L. Sigg, Adsorption
of Cu, Cd, and Ni on goethite in the presence of natural
groundwater ligands, Environ. Technol., 36 (2002) 328–336.
- L. Xia, Z.H. Huang, L. Zhong, F.W. Xie, C.Y. Tang,
C.P. Tsui, Bagasse cellulose grafted with an amino-terminated
hyperbranched polymer for the removal of Cr(VI) from aqueous
solution, Polymer, 10 (2018) 391−405.
- G. Xu, L. Wang, Y. Xie, M.L. Tao, W.Q. Zhang, Highly
selective and efficient adsorption of Hg2+ by a recyclable
aminophosphonic acid functionalized polyacrylonitrile fiber,
J. Hazard. Mater., 344 (2018) 679−688
- I. Ali, M. Asim, T.A. Khan, Low cost adsorbents for the removal
of organic pollutants from wastewater, J. Environ. Manage.,
113 (2012) 170–183.
- S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, A review of
potentially low-cost sorbents for heavy metals, Water Res.,
33 (1999) 2469–2479.
- H.O. Abugu, P.A.C. Okoye, V.I.E. Ajiwe, P.C. Oford, Preparation
and characterisation of activated carbon from agrowastes
peanut seed (African canarium) and palm kernel shell, Int. J.
Innovative Res. Dev., 3 (2014) 13.
- S. Vitas, T. Keplinger, N. Reichholf, R. Figi, E. Cabane, Functional
lignocellulosic material for the remediation of copper(II) ions
from water: towards the design of a wood filter, J. Hazard.
Mater., 355 (2018) 119−127.
- A. Saeed, M.W. Akhter, M. Iqbal, Removal and recovery of
heavy metals from aqueous solution using papaya wood as a
new biosorbent, Sep. Purif. Technol., 45 (2005) 25–31.
- N.A.A. Babarinde, J.O. Babalola, R.A. Sanni, Biosorption of
lead ions from aqueous solution by maize leaf, Int. J. Phys. Sci.,
1 (2006) 23–26.
- M. Šćiban, M. Klašnja, Wood sawdust and wood originate
materials as adsorbents for heavy metal ions, Holz als Roh- und
Werkstoff, 62 (2004) 69–73.
- P.D. Johnson, M.A. Watson, J. Brown, I.A. Jefcoat, Peanut hull
pellets as a single use sorbent for the capture of Cu(II) from
wastewater, Waste Manage., 22 (2002) 471–480.
- H.O. Abugu, P.A.C. Okoye, V.I.E. Ajiwe, P.E. Omuku,
U.C. Umeobika, Preparation and characterization of activated
carbon produced from oil bean (Ugba or Ukpaka) and snail
shell, J. Environ. Anal. Chem., 2 (2015) 165, doi: 10.4172/
2380-2391.1000165.
- O.C. Ugwoke, B. Dauda, J.A. Ezugwu, H.O. Abugu,
L.O. Alum, S.I. Eze, O.A. Odewole, Chromium adsorption
using modified locust bean and maize husk, Der Pharma
Chem., 12 (2020) 7–14.
- B. Chen, H. Zhao, S.J. Chen, F.X. Long, B.Q. Huang,
B.Q. Yang, X.J. Pan, A magnetically recyclable chitosan composite
adsorbent functionalized with EDTA for simultaneous
capture of anionic dye and heavy metals in complex
wastewater, Chem. Eng. J., 356 (2019) 69−80.
- N. Supanchaiyamat, K. Jetsrisuparb, J.T.N. Knijnenburg,
D.C.W. Tsang, A.J. Hunt, Lignin materials for adsorption:
current trend, perspectives and opportunities, Bioresour.
Technol., 272 (2019) 570−581.
- M. Sćiban, M. Klasnja, B. Skrbić, Modified softwood sawdust
as adsorbent of heavy metal ions from water, J. Hazard. Mater.,
136 (2006) 266–271.
- Q. Li, J.P. Zhai, W.Y. Zhang, M.M. Wang, J. Zhou, Kinetic studies
of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution
by sawdust and modified peanut husk, J. Hazard. Mater.,
141 (2006) 163–167.
- C.R.T. Tarley, S.L.C. Ferreira, M.A.Z. Arruda, Use of
modified rice husks as a natural solid adsorbent of trace
metals: characterization and development of an on-line
preconcentration system for cadmium and lead determined by
FAAS, Microchem. J., 77 (2004) 163–175.
- K.J. Tiemann, G. Gamez, K. Dokken, J.G. Parsons, J.L. Gardea-Torresdey, Chemical modification and X-ray absorption
studies for lead(II) binding by Medicago sativa (alfalfa) biomass,
Microchem. J., 71 (2002) 287–293.
- K.S. Low, C.K. Lee, A.C. Leo, Removal of metals from
electroplating wastes using banana pith, Bioresour. Technol.,
51 (1995) 227–231.
- O. Karnitz Jr., L.V.A. Gurgel, J.C.P. de Melo, V.R. Botaro,
T.M.S. Melo, R.P. de Freitas Gil, L.F. Gil, Adsorption of heavy metal
ion from aqueous single metal solution by chemically modified
sugarcane bagasse, Bioresour. Technol., 98 (2007) 1291–1297.
- M.A. Ferro-García, J. Rivera-Utrilla, J. Rodriguez-Gordillo,
I. Bautista-Toledo, Adsorption of zinc, cadmium, and copper
on activated carbons obtained from agricultural by-products,
Carbon, 26 (1988) 363–373.
- A.A. Olapade, O.A. Ajayi, I.A. Ajayi, Physical and chemical
properties of Cassia sieberiana seeds, Int. Food Res. J., 21 (2014)
767–772.
- S. Lagergren, About the theory of so-called adsorption of
soluble substances, Kungliga Svenska Vetenskapsakademiens
Handlingar, 24 (1898) 1–39.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- Y.S. Ho, G. McKay, The kinetics of sorption of basic dyes from
aqueous solution by sphagnum moss peat, Can. J. Chem.
Eng., 76 (1998) 822–827.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon
from solution, J. Am. Soc. Civ. Eng., 89 (1963) 31–60.
- A. Kapoor, R.T. Yang, Correlation of equilibrium adsorption
data of condensible vapours on porous adsorbents, Gas Sep.
Purif., 3 (1989) 187–192.
- D.W. Marquardt, An algorithm for least-squares estimation
of non-linear parameters, J. Soc. Ind. Appl. Math., 11 (1963)
431–441.
- M.K. Miyittah, F.W. Tsyawo, K.K. Kumah, C.D. Stanley,
J.E. Rechcigl, Suitability of two methods for determination of
point of zero charge (PZC) of adsorbents in soils, Commun.
Soil Sci. Plant Anal., 47 (2016) 101–111.
- G. Uehara, G. Gillman, The Mineralogy, Chemistry, and
Physics of Tropical Soils with Variable Charge Clays, Westview
Press Inc., Boulder, Colorado, 1981.
- B.Y. Nale, J.A. Kagbu, A. Uzairu, E.T. Nwankwere, S. Saidu,
H. Musa, Kinetic and equilibrium studies of the adsorption of
lead(II) and nickel(II) ions from aqueous solutions on activated
carbon prepared from maize cob, Der Chem. Sin., 3 (2012)
302–312.
- J.Y. Zheng, Q.L. Zhao, Z.F. Ye, Preparation and characterization
of activated carbon fiber (ACF) from cotton woven waste, Appl.
Surf. Sci. J., 299 (2014) 86–91.
- D.V. Bojić, M.S. Ranđelović, A.R. Zarubica, J.Z. Mitrović,
M.D. Radović, M.M. Purenović, A.L. Bojić, Comparison of
new biosorbents based on chemically modified Lagenaria
vulgaris shell, Desal. Water Treat., 51 (2013) 6871–6881.
- J.J. Liu, X.C. Wang, B. Fan, Characteristics of PAHs adsorption
on inorganic particles and activated sludge in domestic wastewater
treatment, Bioresour. Technol., 102 (2011) 5305–5311.
- X. Hu, J.C. Cao, H.Y. Yang, D.H. Li, Y. Qiao, J.L. Zhao,
Z.X. Zhang, L. Huang, Pb2+ biosorption from aqueous solutions
by live and dead biosorbents of the hydrocarbon-degrading
strain Rhodococcus sp. HX-2, PLoS One, 15 (2020) e0226557,
https://doi.org/10.1371/journal.pone.0226557.
- J.D. Roberts, M.C. Caserio, Basic Principles of Organic
Chemistry and Modern Organic Chemistry, California Institute
of Technology, W.A. Benjamin, Inc. , Menlo Park, CA, 1977.
- P. Kumar Jha, V. Kumar Jha, Iodine adsorption characteristics
of activated carbon obtained from Spinacia oleracea (spinach)
leaves, Mongolian J. Chem., 21 (2020) 1–11, doi: 10.5564/mjc.
v21i47.1249.
- G. Kirova, Z. Velkova, V. Gochev, Copper(II) removal by heat
inactivated Streptomyces fradiae biomass: surface chemistry
characterization of the biosorbent, J. BioSci. Biotech., (2012)
77–82.
- H.R. Hesas, A. Arami-Niya, W.M.A.W. Daud, J.N. Sahu,
Preparation and characterization of activated carbon from
apple waste by microwave-assisted phosphoric acid activation:
application in methylene blue adsorption, Bioresources,
8 (2013) 2950–2966.
- G.F. de Oliveira, R.C. de Andrade, M.A.G. Trindade,
H.M.C. Andrade, CT. de Carvalho, Thermogravimetric and
spectroscopic study (TG–DTA/FTIR) of activated carbon
from the renewable biomass source babassu, Quim. Nova,
40 (2017) 284–292.
- A. Bazan, P. Nowicki, P. Półrolniczak, R. Pietrzak, Thermal
analysis of activated carbon obtained from residue after
supercritical extraction of hops, J. Therm. Anal. Calorim.,
125 (2016) 1199–1204.
- V.K. Gupta, M. Gupta, S. Sharma, Process development for
the removal of lead and chromium from aqueous solutions
using red mud—an aluminium industry waste, Water Resour.,
35 (2001) 1125–1134.
- B. Das, N.K. Mondal, Calcareous soil as a new adsorbent to
remove lead from aqueous solution: equilibrium, kinetic and
thermodynamic study, Univ. J. Environ. Res. Technol., 1 (2011)
515–530.
- M.E. Argun, S. Dursun, C. Ozdemir, M. Karatas. Heavy metal
adsorption by modified oak sawdust: thermodynamics and
kinetics, J. Hazard. Mater., 141 (2007) 77–85.
- S. Swapna Priya, K.V. Radha, Equilibrium, isotherm, kinetic
and thermodynamic adsorption studies of tetracycline
hydrochloride onto commercial grade granular activated
carbon, Int. J. Pharm. Sci., 71 (2014) 42–51.
- S. Rangabhashiyam, N. Anu, M.S. Giri Nandagopal,
N. Selvaraju, Relevance of isotherm models in biosorption
of pollutants by agricultural byproducts, J. Environ. Chem.
Eng., 6 (2014) 2398–2414.
- A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, Langmuir,
Freundlich, Temkin and Dubinin–Radushkevich isotherms
studies of equilibrium sorption of Zn2+ onto phosphoric acid
modified rice husk, J. Appl. Chem., 3 (2012) 2278–5736.
- J. Sreńscek-Nazzal, U. Narkiewicz, A.W. Morawski, R. Wróbel,
A. Gęsikiewicz-Puchalska, B. Michalkiewicz, Modification of
commercial activated carbons for CO2 adsorption, Acta Phys.
Pol. A, 129 (2016) 394–401.
- B. Singha, S.K. Das, Adsorptive removal of Cu(II) from aqueous
solution and industrial effluent using natural/agricultural
wastes, Colloids Surf., B, 107 (2013) 97–106.
- E. Cristiano, Y.-J. Hu, M. Sigfried, D. Kaplan, H. Nitsche,
A comparison of point of zero charge measurement
methodology, Clays Clay Miner., 59 (2011) 107–115.
- M. Kosmulski, Attempt to determine pristine points of
zero charge of Nb2O5, Ta2O5, and HfO2, Langmuir, 13 (1997)
6315–6320.
- J.W. Moon, H.L. Lee, J.D. Kim, G.D. Kim, D.A. Lee, H.W. Lee,
Preparation of ZrO2-coated NiO powder using surface-induced
coating, Mater. Lett., 38 (1999) 214–220.
- T. Mahmood, M.T. Saddique, A. Naeem, P. Westerhoff,
S. Mustafa, A. Alum, Comparison of different methods for the
point of zero charge determination of NiO, Ind. Eng. Chem.
Res., 50 (2011) 10017–10023.
- K. Mohanty, M. Jha, B.C. Meikap, M.N. Biswas, Biosorption
of Cr(VI) from aqueous solutions by Eichhornia crassipes,
Chem. Eng. J., 117 (2006) 71–77.