References

  1. Z. Aksu, Biosorption of Heavy Metals by Microalgae in Batch and Continuous Systems, Y.-S. Wong, N.F.Y. Tam, Eds., Algae for Wastewater Treatment, Springer-Verlag and Landes Bioscience, Germany, 1998, p. 37–53.
  2. G. Dönmez, Z. Aksu, The effect of copper(II) ions on growth and bioaccumulation properties of some yeasts, Process Biochem., 35 (1999) 135–142.
  3. N. Babakhouya, S. Boughrara, F. Abad, Kinetics and thermodynamics of Cd(II) ions sorption on mixed sorbents prepared from olive stone and date pit from aqueous solution, Am. J. Environ. Sci., 6 (2010) 470–476.
  4. E. Cheraghi, E. Ameri, A. Moheb, Adsorption of Cd(II) ions from aqueous solutions using sesame as a low-cost biosorbent: kinetics and equilibrium studies, Int. J. Environ. Sci. Technol., 12 (2015) 2579–2592.
  5. J.C. Igwe, A.A. Abia, Adsorption isotherm studies of Cd(II), Pb(II) and Zn(II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob, Eclet. Quím., 32 (2007) 33–42.
  6. V.C. Taty-Costodes, H. Fauduet, C. Porte, A. Delacroix, Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris, J. Hazard. Mater., 105 (2003) 121–142.
  7. V. Sameera, N.C.H. Deepthi, S.G. Babu, R.Y. Teja, Role of biosorption in environmental cleanup, J. Microbial. Biochem. Technol., 3 (2011) 1–8.
  8. Z. Aksu, T. Kutsal, A comparative study for biosorption characteristics of heavy metal ions with C. vulgaris, Environ. Technol., 11 (1990) 979–987.
  9. S.V. Avery, J.M. Tobin, Mechanism of adsorption of hard and soft metal ions to Saccharomyces cerevisiae and influence of hard and soft anions, Appl. Environ. Microbiol., 59 (1993) 2851–2856.
  10. G. Dönmez, Z. Aksu, Removal of chromium(VI) from saline wastewaters by Dunaliella species, Process Biochem., 38 (2002) 751–762.
  11. S. Abdul-Talib, C.-C. Tay, N.-A. Zakaria, A. Ab-Ghani, L. Mohd- Sidek, N.-W. Chan, Water and environmental engineering: embracing multidisciplinary approach through advanced and integrated technologies for sustainability, J. Asian Sci. Res., 4 (2014) 194–206.
  12. E. Diaz, Microbial Biodegradation: Genomics and Molecular Biology, 1st ed., Caister Academic Press, UK, 2008.
  13. B.S. Inbaraj, K. Selvarani, N. Sulochana, Evaluation of a carbonaceous sorbent prepared from pearl millet husk for its removal of basic dyes, J. Sci. Ind. Res., 61 (2002) 971–978.
  14. S.K. Khare, K.K. Panday, R.M. Srivastava, V.N. Singh, Removal of Victoria blue from aqueous solution by fly ash, J. Chem. Technol. Biotechnol., 38 (1987) 99–104.
  15. I.D. Mall, S.N. Upadhyay, Studies on treatment of basic dyes bearing wastewater by adsorptive treatment using fly ash, Indian J. Environ. Health, 40 (1998) 177–188.
  16. S. Ismadji, S.K. Bhatia, Adsorption of flavour esters on granular activated carbon, Can. J. Chem. Eng., 78 (2000) 892–901.
  17. T. Santhi, S. Manonmani, V.S. Vasantha, Y.T. Chang, A new alternative adsorbent for the removal of cationic dyes from aqueous solution, Arabian J. Chem., 9 (2016) S466–S474.
  18. S. Langergren, Zur theorie der sogenannten adsorption gelöster stoffe, Kungl. Svens. Veternskapsakad. Handl., 24 (1898) 1–39.
  19. Y.S. Ho, G. McKay, The kinetics of sorption of basic dyes from aqueous solutions by sphagnum moss peat, Can. J. Chem. Eng., 76 (1998) 822–826.
  20. M. Ozacar, I.A. Sengil, A kinetic study of metal complex dye sorption onto pinedust, Process Biochem., 40 (2005) 565–572.
  21. G. McKay, M.S. Otterburn, J.A. Aja, Fuller’s earth and fired clay as adsorbents for dye stuffs, Water Air Soil Pollut., 24 (1985) 307–322.
  22. W.J. Weber, J.C. Morris, J. Sanity, Kinetics of adsorption on carbon from solution, Eng. Div. Am. Soc. Civ. Eng., 89 (1963) 31–60.
  23. M. Sarkar, P.K. Acharya, B. Bhaskar, Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters, J. Colloid Interface Sci., 266 (2003) 28–32.
  24. G.E. Boyd, A.W. Adamson, I.S. Myers, The exchange adsorption of ions from aqueous solutions by organic zeolites; kinetics, J. Am. Chem. Soc., 69 (1947) 2836–2848.
  25. Y.S. Ho, Effect of pH on lead removal from water using tree fern as the sorbent, Bioresour. Technol., 96 (2005) 1292–1996.
  26. N. Unlu, M. Ersoz, Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbents from aqueous solution, J. Hazard. Mater., 136 (2006) 272–280.
  27. A. Mohammad, A.K.R. Rifaqat, A. Rais, A. Jameel, Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater, J. Hazard. Mater., 79 (2000) 117–131.
  28. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies, Desalination, 225 (2008) 13–28.
  29. A. Seker, T. Shahwan, A.E. Eroglu, Y. Sinan, Z. Demirel, M.C. Dalay, Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II), cadmium(II) and nickel(II) ions on Spirulina platensis, J. Hazard. Mater., 154 (2008) 973–980.
  30. B.H. Hameed, L.H. Chin, S. Rengaraj, Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust, Desalination, 225 (2008) 185–198.
  31. M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physicochim., 12 (1940) 327–356.
  32. WHO, Guidelines for the Safe Use of Wastewater, Excreta and Grey Water, Vol. 1, World Health Organization, 2006, 95 p.
  33. J. Blackwell, P.D. Vasko, J.L. Koenig, Infrared and Raman spectra of the cellulose from the cell wall of Valonia ventricosa, J. Appl. Phys., 41 (1970) 4375–4379.
  34. L. Wang, G. Han, Y. Zhang, Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments, Carbohydr. Polym., 69 (2007) 391–397.
  35. D.V. Bojić, M.S. Ranđelović, A.R. Zarubica, J.Z. Mitrović, M.D. Radović, M.M. Purenović, A.L. Bojić, Comparison of new biosorbents based on chemically modified Lagenaria vulgaris shell, Desal. Water Treat., 51 (2013) 6871–6881.
  36. G. Kirova, Z. Velkova, V. Gochev, Copper(II) removal by heat inactivated Streptomyces fradiae biomass: surface chemistry characterization of the biosorbent, J. Biosci. Biotechnol., 2012 (2012) 77–82.
  37. M.S.F. Ramle, O. Sulaiman, R. Hashim, T. Arai, A. Kosugi, H. Abe, Y. Murata, Y. Mori, Characterization of parenchyma and vascular bundle of oil palm trunk as function of storage time, Lignocellulose, 1 (2012) 33–44.
  38. X. Colom, F. Carrillo, Crystallinity changes in lyocell and viscose-type fibers by caustic treatment, Eur. Polym. J., 38 (2002) 2225–2230.
  39. S.J. Kleinübing, R.S. Vieira, M.M. Beppu, E. Guibal, M.G. Carlos da Silva, Characterization and evaluation of copper and nickel biosorption on acidic algae Sargassum filipendula, Mater. Res., 13 (2010) 541–550.
  40. H. Liu, F. Yang, Y. Zheng, J. Kang, J. Qu, J.P. Chen, Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology, Water Res., 45 (2011) 145–154.
  41. M.O. Kazeem, M.U.K. Shah, A.S. Bahariddin, N.A. Abdul Rahman, Influence of high-pressure steam pretreatment on the structure of rice husk and enzymatic saccharification in a two-step system, Bioresources, 12 (2017) 6207–6236.
  42. W.T. Kwon, D.H. Kim, Y.P. Kim, Characterization of heavy oil fly ash generated from a power plant, AZo J. Mater., 9 (2005) 1–10.
  43. A. Zabaniotou, G. Stavropoulos, V. Skoulou, Activated carbon from olive kernels in a two-stage process: industrial improvement, Bioresour. Technol., 99 (2008) 320–326.
  44. A. Mukherjee, A.R. Zimmerman, W. Harris, Surface chemistry variations among a series of laboratory-produced biochars, Geoderma, 163 (2011) 247–255.
  45. A.M. Dehkhoda, A.H. West, N. Ellis, Biochar based solid acid catalyst for biodiesel production, Appl. Catal., A, 382 (2010) 197–204.
  46. O.A. Mohamad, X. Hao, P. Xie, S. Hatab, Y. Lin, G. Wei, Biosorption of copper(II) from aqueous solution using nonliving Mesorhizobium amorphae strain CCNWGS0123, Microbes Environ., 27 (2012) 234–241.
  47. Y. Zheng, X. Fang, Z. Ye, Y. Li, W. Cai, Biosorption of Cu(II) on extracellular polymers from Bacillus sp. F19, J. Environ. Sci., 20 (2008) 1288–1293.
  48. M. Al-Anber, Removal of iron(III) from model solution using Jordanian natural zeolite: magnetic study, Asian J. Chem., 19 (2007) 3493–3501.
  49. M. Al-Anber, Z. Al-Anber, Utilization of natural zeolite as ion-exchange and sorbent material in the removal of iron, Desalination, 255 (2008) 70–81.
  50. R. Malik, S. Lata, S. Singhal, Neem leaf utilization for copper and zinc ions removal from aqueous solution, Int. J. Sci. Res., 3 (2012) 695–705.
  51. P. Somasundaran, S.C. Mehta, X. Yu, S. Krishnakumar, Chapter 6: Colloid Systems and Interfaces Stability of Dispersions Through Polymer and Surfactant Adsorption, K.S. Bird, Ed., Handbook of Surface and Colloid Chemistry, 3rd ed., Taylor & Francis Group, LLC, 2009, pp. 155–194.
  52. H.J. Gong, X.Y. Zhu, K.M. Chen, S.M. Wang, C.L. Zhang, Silicon alleviates oxidative damage of wheat plants in pots under drought, Plant Sci., 169 (2005) 313–321.
  53. K. Vijayaraghavan, K. Palanivelu, M.Velan, Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles, Bioresour. Technol., 97 (2006) 1411–1419.
  54. A.M. Haleem, E.A. Abdulgafoor, The biosorption of Cr(VI) from aqueous solution using date palm fibers (leef), Al-Khwarizmi Eng. J., 6 (2010) 31–36.
  55. Y. Lui, X. Chang, Y. Gue, S. Meng, Biosorption and preconcentration of lead and cadmium on waste Chinese herb Pang DA Hai, J. Hazard. Mater., 135 (2006) 389–394.
  56. H. Li, Y. Lin, W. Guan, J. Chang, L. Xu, J. Guo, G. Wei, Biosorption of Zn(II) by live and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72–14, J. Hazard. Mater., 179 (2010) 151–159.
  57. H. Ucun, Y.K. Bayhan, Y. Kaya, A. Cakici, A.O. Faruk, Biosorption of chromium(VI) from aqueous solution by cone biomass of Pinus sylvestris, Bioresour. Technol., 85 (2002) 155–158.
  58. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  59. R.L. Tseng, Mesopore control of high surface area NaOH-activated carbon, J. Colloid Interface Sci., 303 (2006) 494–502.
  60. F.W. Meng, Study on a Mathematical Model in Predicting Breakthrough Curves of Fixed Bed Adsorption onto Resin Adsorbent, MS Thesis, Nanjing University, China, 2005, pp. 28–36.
  61. K. Kannan, M.M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons: a comparative study, Dyes Pigm., 51 (2001) 25–40.
  62. A.E. Ofomaja, Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust, Chem. Eng. J., 143 (2008) 85–95.
  63. F. Gode, E. Pehlivan, A comparative study of two chelating ion-exchange resins for the removal of chromium(III) from aqueous solution, J. Hazard. Mater., 100 (2003) 231–243.
  64. G. Gode, E. Pehlivan, Adsorption of Cr(III) ions by Turkish brown coals, Fuel Process Technol., 86 (2005) 875–884.
  65. M.M. Dubinin, E.D. Zaverina, L.V. Radushkevich, Sorption and structure of activated carbons. I investigation of organic vapor adsorption, Zh Fiz Khim, 21 (1947) 1351–1362.
  66. Y.S. Ho, J.F. Porter, G. McKay, Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems, Water Air Soil Pollut., 141 (2002) 1–33.
  67. J.M. Smith, Chemical Engineering Kinetics, McGraw-Hill, New York, NY, 1981.
  68. P.J. Lloyd-Jones, J.R. Rangel-Mendez, M. Streat, Sorption of cadmium using a natural biosorbent and activated carbon, IChemE Symp. Ser., 148 (2001) 847–866.
  69. T.M. Alslaibi, I. Abustan, M.A. Ahmad, A. Abu Foul, Cadmium removal from aqueous solution using microwaved olive stone activated carbon, J. Environ. Chem. Eng., 1 (2013) 589–599.
  70. S. Abdulrazak, K. Hussaini, H. M. Sani, Evaluation of removal efficiency of heavy metals by low-cost activated carbon prepared from African palm fruit, Appl. Water Sci., 7 (2017) 3151–3155.
  71. M.A. Naeem, M. Imran, M. Amjad, G. Abbas, M. Tahir, B. Murtaza, A. Zakir, M. Shahid, L. Bulgariu, I. Ahmad, Batch and column scale removal of cadmium from water using raw and acid activated wheat straw biochar, Water, 11 (2019) 1–17.