References

  1. J.H. Qu, Research progress of novel adsorption processes in water purification: a review, J. Environ. Sci., 20 (2008) 1–13.
  2. I. Ali, M. Asim, T.A. Khan, Low cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manage., 113 (2012) 170–183.
  3. V.K. Gupta, Suhas. Application of low-cost adsorbents for dye removal – a review, Environ. Manage., 90 (2009) 2313–2342.
  4. A. Tripathi, M.R. Ranjan, Heavy metal removal from wastewater using low cost adsorbents, J. Biorem. Biodegrad., 6 (2015) 315, doi: 10.4172/2155-6199.1000315.
  5. J. Lehmann, A handful of carbon, Nature, 447 (2007) 143–144.
  6. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent for contaminant management in soil and water: a review, Chemosphere, 99 (2014) 19–33.
  7. D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman Jr., Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent — a critical review, Bioresour. Technol., 160 (2014) 191–202.
  8. A.U. Rajapaksha, S.S. Chen, D.C.W. Tsang, M. Zhang, M. Vithanage, S. Mandal, B. Gao, N.S. Bolan, Y.S. Ok, Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification, Chemosphere, 148 (2016) 276–291.
  9. Y.-J. Tu, C.-F. You, C.-K. Chang, T.-S. Chan, S.-H. Li, XANES evidence of molybdenum adsorption onto novel fabricated nano-magnetic CuFe2O4, Chem. Eng. J., 244 (2014) 343–349.
  10. F. Ogata, T. Nakamura, N. Kawasaki, Adsorption capability of virgin and calcined wheat bran for molybdenum present in aqueous solution and elucidating the adsorption mechanism by adsorption isotherms, kinetics, and regeneration, J. Environ. Chem. Eng., 6 (2018) 4459–4466.
  11. Z.M. Guan, J.F. Lv, P. Bai, X.H. Guo, Boron removal from aqueous solutions by adsorption — a review, Desalination, 383 (2016) 29–37.
  12. R. Brion-Roby, J. Gagnon, S. Nosrati, J.-S. Deschênes, B. Chabot, Adsorption and desorption of molybdenum(VI) in contaminated water using a chitosan sorbent, J. Water Process Eng., 23 (2018) 13–19.
  13. Y.-C. Chen, C.S. Lu, Kinetics, thermodynamics and regeneration of molybdenum adsorption in aqueous solutions with NaOCl-oxidized multiwalled carbon nanotubes, J. Ind. Eng. Chem., 20 (2014) 2521–2527.
  14. W.S. Chen, Y.P. Guo, X. Mi, Y. Yu, G.T. Li, Enhanced adsorptive removal of methylene blue by low-temperature biochar derived from municipal activated sludge, Desal. Water Treat., 188 (2020) 257–265.
  15. M. Abdulkarim, F. Abu Al-Rub, Adsorption of lead ions from aqueous solution onto activated carbon and chemicallymodified activated carbon prepared from date pits, Adsorpt. Sci. Technol., 22 (2004) 119–134.
  16. V. Strelko Jr., D.J. Malik, M. Streat, Characterization of the surface of oxidized carbon adsorbents, Carbon, 40 (2002) 95–104.
  17. Z.W. Zhao, J. Liu, W.T. Xia, C.F. Cao, X.Y. Chen, H.G. Li, Surface complexation modeling of soluble molybdenum adsorption by Mn3O4, J. Chem. Technol. Biotechnol., 85 (2010) 121–126.
  18. F.A. Bertoni, A.C. Medeot, J.C. González, L.F. Sala, S.E. Bellú, Application of green seaweed biomass for MoVI sorption from contaminated waters. Kinetic, thermodynamic and continuous sorption studies, J. Colloid Interface Sci., 446 (2015) 122–132.
  19. S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsakademiens, Handlinga, 24 (1898) 1–39.
  20. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption process, Process Biochem., 34 (1999) 451–65.
  21. M. Kithome, J.W. Paul, L.M. Lavkulich, A.A. Bomke. Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite, Soil Sci. Soc. Am. J., 62 (1988) 622–629.
  22. C.W. Cheung, J.F. Porter, G. McKay, Sorption kinetics for the removal of copper and zinc from effluents using bone char, Sep. Purif. Technol., 19 (2000) 55–64.
  23. E. Guibal, C. Milot, J.M. Tobin, Metal-anion sorption by chitosan beads: equilibrium and kinetic studies, Ind. Eng. Chem. Res., 37 (1998) 1454–1463.
  24. H.M.F. Freundlich, Uber die adsorption in lasungen, J. Phys. Chem., 57 (1906) 385–470.
  25. A. Afkhami, R. Norooz-Asl, Removal, preconcentration and determination of Mo(VI) from water and wastewater samples using maghemite nanoparticles, Colloids Surf., A, 346 (2009) 52–57.
  26. H. Sepehrian, S. Waqif-Husain, J. Fasihi, M.K. Mahani, Adsorption behavior of molybdenum on modified mesoporous zirconium silicates, Sep. Sci. Technol., 45 (2010) 421–426.
  27. C. Namasivayam, D. Sangeetha, Removal of molybdate from water by adsorption onto ZnCl2 activated coir pith carbon, Bioresour. Technol., 97 (2006) 1194–1200.
  28. C. Namasivayam, K. Prathap, Uptake of molybdate by adsorption onto industrial solid waste Fe(III)/Cr(III) hydroxide: kinetic and equilibrium studies, Environ. Technol., 27 (2006) 923–932.
  29. G. Dodbiba, T. Fujita, T. Kikuchi, J. Manjanna, S. Matsuo, H. Takahashi, K. Tohji, Synthesis of iron-based adsorbents and their application in the adsorption of molybdenum ions in nitric acid solution, Chem. Eng. J., 166 (2011) 496–503.
  30. N. Fallah, M. Taghizadeh, S. Hassanpour, Selective adsorption of Mo(VI) ions from aqueous solution using a surface-grafted Mo(VI) ion imprinted polymer, Polymer, 144 (2018) 80–91.
  31. X. Wang, Y. Zhang, Q.M. Li, Characterization and determination of the thermodynamic and kinetic properties of the adsorption of molybdenum(VI) onto microcrystalline anthracene modified with 8-hydroxyquinoline, Mater. Sci. Eng. C, 31 (2011) 1826–1831.
  32. X. Yuan, W. Xing, S.-P. Zhuo, Z.H. Han, G.Q. Wang, X.L. Gao, Z.-F. Yan, Preparation and application of mesoporous Fe/carbon composites as a drug carrier, Microporous Mesoporous Mater., 117 (2009) 678–684.
  33. S. Altenor, B. Carene, E. Emmanuel, J. Lambert, J.-J. Ehrhardt, S. Gaspard, Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation, J. Hazard. Mater., 165 (2009) 1029–1039.
  34. M. Pumera1, B. Šmíd, K. Veltruská, Influence of nitric acid treatment of carbon nanotubes on their physico-chemical properties, J. Nanosci. Nanotechnol., 9 (2009) 2671–2676.
  35. C.S. Lu, C.T. Liu, F.S. Su, Sorption kinetics, thermodynamics and competition of Ni2+ from aqueous solutions onto surface oxidized carbon nanotubes, Desalination, 249 (2009) 18–23.
  36. N. Yeddou, A. Bensmaili, Kinetic models for the sorption of dye from aqueous solution by clay-wood sawdust mixture, Desalination, 185 (2005) 499–508.