References
- WHO, Guidelines for Drinking Water Quality, 4th ed., World
Health Organization, Geneva, 2011.
- J.R. Rak, K. Pietrucha-Urbanik, An approach to determine risk
indices for drinking water-study investigation, Sustainability,
11 (2019) 3189, doi: 10.3390/su11113189.
- J. Inkinen, T. Kaunisto, A. Pursiainen, I.T. Miettinen,
J. Kusnetsov, K. Riihinen, M.M. Keinänen-Toivola, Drinking
water quality and formation of biofilms in an office building
during its first year of operation, a full scale study, Water Res.,
49 (2014) 83–91.
- K. Lautenschlager, N. Boon, Y. Wang, T. Egli, F. Hammes,
Overnight stagnation of drinking water in household taps
induces microbial growth and changes in community
composition, Water Res., 44 (2010) 4868–4877.
- M.J. Lehtola, I.T. Miettinen, M.M. Keinänen, T.K. Kekki, O. Laine,
A. Hirvonen, T. Vartiainen, P.J. Martikainen, Microbiology,
chemistry and biofilm development in a pilot drinking water
distribution system with copper and plastic pipes, Water Res.,
38 (2004) 3769–3779.
- J. Nawrocki, U. Raczyk-Stanisławiak, J. Świetlik, A. Olejnik,
M.J. Sroka, Corrosion in a distribution system: steady water and
its composition, Water Res., 44 (2010) 1863–1872.
- D. Papciak, B. Tchórzewska-Cieślak, A. Domoń, A. Wojtuś,
J. Żywiec, J. Konkol, The impact of the quality of tap water
and the properties of installation materials on the formation of
biofilms, Water, 11 (2019) 1903, doi: 10.3390/w11091903.
- P. Niquette, Impacts of pipe materials on densities of fixed
bacterial biomass in a drinking water distribution system,
Water Res., 34 (2000) 1952–1956.
- Directive (EU) 2020/2184 of the European Parliament and of the
Council of 16 December 2020 on the Quality of Water Intended
for Human Consumption (Recast).
- EN 15975-2 Security of Drinking Water Supply – Guidelines for
Risk and Crisis Management – Part 2: Risk Management.
- I. Zimoch, M. Skrzypczak, Influence of treatment efficiency
on microbiological stability of water, Desal. Water Treat.,
199 (2020) 331–338.
- I. Zimoch, J. Paciej, Use of water turbidity as an identifier of
microbiological contamination in the risk assessment of water
consumer health, Desal. Water Treat., 199 (2020) 499–511.
- I. Zimoch, J. Paciej, Health risk assessment of swimming pool
users from the effects of Legionella spp. contamination of water,
J. Ecol. Eng., 21 (2020) 178–189.
- A. Grabińska-Łoniewska, E. Siński, Pathogenic and Potentially
Pathogenic Microorganisms in Aquatic Ecosystems and Water
Supply Networks, Wydawnictwo Seidel-Przywecki, Warsaw,
2010.
- J. Wingender, H.C. Flemming, Biofilms in Drinking Water and
Their Role as Reservoir for Pathogens, Int. J. Hyg. Environ.
Health, 214 (2011) 417–423.
- Główny Inspektorat Sanitarny, Chief Sanitary Inspectorate,
Total Number of Microorganisms at 22°C in Water Intended for
Human Consumption, Warsaw, 2018 (in Polish).
- D. Mara, N. Horan, Handbook of Water and Wastewater
Microbiology, Academic Press, London, 2003.
- Council Directive 98/83/EC of 3 November 1998 on the Quality
of Water Intended for Human Consumption.
- Legal Act: Regulation of the Minister of Health of 7 December
2017 on the Quality of Water Intended for Human Consumption)
(in Polish).
- U.S. EPA, National Primary Drinking Water Regulations,
U.S. Environmental Protection Agency EPA 816-F-09-004,
Washington, DC, 2009.
- WHO, Heterotrophic Plate Count Measurement in Drinking
Water Safety Management, Report of an Expert Meeting,
Geneva, 24–25 April 2002, Department of Protection of the
Human Environment, Water, Sanitation and Health, World
Health Organization, Geneva, Switzerland, 2002. Available at:
www.who.int/water_sanitation_health/dwq/wsh0210/en/
- ReliaSoft, Life Data Analysis Reference, ReliaSoft Publishing,
Tucson, AZ, USA, 2008.
- N.L. Clement, R.C. Lasky, Weibull Distribution and Analysis:
2019, Proceedings of the Pan Pacific Microelectronics
Symposium, Kohala Coast, HI, USA, 2020.
- J. Diaz, K. Parsell, K.K. Trivedi, Use Weibull Analysis and
Reliability Modeling to Improve Reciprocating Compressor
Reliability, Conference Proceedings on AIChE Spring National
Meeting, Atlanta, GA, USA, 2005, p. 1227.
- Y. Gu, D. Ge, Y. Xiong, A reliability data analysis method
using mixture Weibull distribution model, Appl. Mech. Mater.,
148–149 (2011) 1449–1453.
- Y. Gu, J. Li, Engine failure data analysis method based on
Weibull distribution model, Appl. Mech. Mater., 128–129 (2011)
850–854.
- L. Scholten, A. Scheidegger, P. Reichert, M. Maurer, Combining
expert knowledge and local data for improved service life
modeling of water supply networks, Environ. Modell. Softw.,
42 (2013) 1–16.
- X. Qin, J.-S. Zhang, X.-D. Yan, Two improved mixture Weibull
models for the analysis of wind speed data, J. Appl. Meteorol.
Climatol., 51 (2012) 1321–1332.
- P. Wais, Two and three-parameter Weibull distribution in
available wind power analysis, Renewable Energy, 103 (2016)
15–29.
- D. Papciak, B. Tchórzewska-Cieślak, A. Domoń, A. Wojtuś,
J. Żywiec, Effect of PVC installation on quality and stability of
tap water, Desal. Water Treat., 186 (2020) 297–308.
- M. Sobczyk, Statistics, Wydawnictwo Naukowe PWN, Warsaw,
2016 (in Polish).
- S.F. Ellermeyer, S.S. Pilyugin, A size-structured model of
bacterial growth and reproduction, J. Biol. Dyn., 6 (2012)
131–147.
- H. Fujikawa, A. Kai, S. Morozumi, A new logistic model for
bacterial growth, J. Food Hyg. Soc. Jpn., 44 (2003) 155–160.
- A. Francisque, M.J. Rodriguez, L.F. Miranda-Moreno, R. Sadiq,
F. Proulx, Modeling of heterotrophic bacteria counts in a water
distribution system, Water Res., 43 (2009) 1075–1087.
- F. Widdel, Theory and Measurement of Bacterial Growth,
Universität Bremen, 2007.
- M.H. Zwietering, I. Jongenburger, F.M. Rombouts, K. van’t
Riet, Modeling of the Bacterial Growth Curve, Appl. Environ.
Microbiol., 56 (1990) 1875–1881.
- M.H. Zwietering, F.M. Rombouts, K. van’t Riet, Comparison
of definitions of the lag phase and the exponential phase in
bacterial growth, J. Appl. Microbiol., 72 (1992) 139–145.
- W. Nelson, Applied Life Data Analysis, John Wiley & Sons, Inc.,
New York, NY, 1982.
- D.K. Lloyd, M. Lipow, Reliability: Management, Methods, and
Mathematics, Prentice Hall, Englewood Cliffs, NJ, 1962.
- J. Augustynowicz, M. Nierebiński, A. Jóźwiak, A. Prędecka,
S. Russel, The effect of basic and chemical parameters on the
numer of psychrofilic and mesophilic bacteria in the waters of
the Vistula river, Water Environ. Rural Areas, 2 (2017) 5–13.
- G. Liu, Y. Zhang, W.J. Knibbe, C. Feng, W. Liu, G. Medema,
W. van der Meer, Potential impact of changing supply-water
quality on drinking water distribution: a review, Water Res.,
116 (2017) 135–148.
- S. Gillespie, P. Lipphaus, J. Green, S. Parsons, P. Weir,
K. Juskowiak, B. Jefferson, P. Jarvis, A. Nocker, Assessing
microbiological water quality in drinking water distribution
systems with disinfectant residual using flow cytometry, Water
Res., 65 (2014) 224–234.
- S.A. Waller, A.I. Packman, M. Hausner, Comparison of biofilm
cell quantification methods for drinking water distribution
systems, J. Microbiol. Methods, 144 (2018) 8–21.
- R.M. Donlan, Biofilms: microbial life on surfaces, Emerg. Infect.
Dis., 8 (2002) 881–890.
- J. Zamorska, Assessment of the Microbiological Quality of Water
Using Breeding Methods, Flow Cytometry and Luminometry,
Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów,
2019.