References

  1. M.J. Eckelman, T.E. Graedel, Silver emissions and their environmental impacts: a multilevel assessment, Environ. Sci. Technol., 41 (2007) 6283–6289.
  2. Z.Y. Chen, P. Yang, Z.G. Yuan, J.H. Guo, Aerobic condition enhances bacteriostatic effects of silver nanoparticles in aquatic environment: an antimicrobial study on Pseudomonas aeruginosa, Sci. Rep., 7 (2017) 7398–7405.
  3. Y.B. Zhou, J. Lu, Y. Zhou, Y.D. Liu, Recent advances for dyes removal using novel adsorbents: a review, Environ. Pollut., 252 (2019) 352–365.
  4. S. Soni, P.K. Bajpai, J. Mittal, C. Arora, Utilisation of cobalt doped Iron based MOF for enhanced removal and recovery of methylene blue dye from waste water, J. Mol. Liq., 314 (2020) 113642–113653.
  5. J. Mittal, Permissible synthetic food dyes in India, Resonance-J. Sci. Educ., 25 (2020) 567–577.
  6. I. Anastopoulos, A. Mittal, M. Usman, J. Mittal, G.H. Yu, A. Núñez-Delgado, M. Kornaros, A review on halloysite-based adsorbents to remove pollutants in water and wastewater, J. Mol. Liq., 269 (2018) 855–868.
  7. V.K. Gupta, S. Agarwal, R. Ahmad, A. Mirza, J. Mittal, Sequestration of toxic congo red dye from aqueous solution using ecofriendly guar gum/activated carbon nanocomposite, Int. J. Biol. Macromol., 158 (2020) 1310–1318.
  8. H. Daraei, A. Mittal, Investigation of adsorption performance of activated carbon prepared from waste tire for the removal of methylene blue dye from wastewater, Desal. Water Treat., 90 (2017) 294–298.
  9. A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials, J. Colloid Interface Sci., 344 (2010) 497–507.
  10. C. Arora, S. Soni, S. Sahu, J. Mittal, P. Kumar, P.K. Bajpai, Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste, J. Mol. Liq., 284 (2019) 343–352.
  11. C. Arora, D. Sahu, D. Bharti, V. Tamrakar, S. Soni, S. Sharma, Adsorption of hazardous dye crystal violet from industrial waste using low-cost adsorbent Chenopodium album, Desal. Water Treat., 167 (2019) 324–332.
  12. X. Qin, L. Bai, Y. Tan, L. Li, F. Song, Y.Z. Wang, β-Cyclodextrincrosslinked polymeric adsorbent for simultaneous removal and stepwise recovery of organic dyes and heavy metal ions: fabrication, performance and mechanisms, Chem. Eng. J., 372 (2019) 1007–1018.
  13. J.-H. Xue, H. Zhang, D.X. Ding, N. Hu, Y.-D. Wang, Y.-S. Wang, Linear β-cyclodextrin polymer functionalized multiwalled carbon nanotubes as nanoadsorbent for highly effective removal of U(VI) from aqueous solution based on inner-sphere surface complexation, ACS Ind. Eng. Chem. Res., 58 (2019) 4074–4083.
  14. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ., 424 (2012) 1–10.
  15. G. Sheng, Y. Li, X. Yang, X.M. Ren, S.T. Yang, J. Hu, X.K. Wang, Efficient removal of arsenate by versatile magnetic graphene oxide composites, RSC Adv., 2 (2012) 12400–12407.
  16. M.V. Rekharsky, Y. Inoue, Complexation thermodynamics of cyclodextrins, Chem. Rev., 98 (1998) 1875–1917.
  17. Z. Wang, F. Cui, Y. Pan, L.X. Hou, B. Zhang, Y.Q. Li, L.P. Zhu, Hierarchically micro-mesoporous beta-cyclodextrin polymers used for ultrafast removal of micropollutants from water, Carbohydr. Polym., 213 (2019) 352–360.
  18. J.H. Chen, D.Q. Lu, B. Chen, P.K. OuYang, Removal of U(VI) from aqueous solutions by using MWCNTs and chitosan modified MWCNTs, J. Radioanal. Nucl. Chem., 295 (2012) 2233–2241.
  19. J. Li, S. Zhang, C. Chen, G.X. Zhao, X. Yang, J.K. Li, X.K. Wang, Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles, ACS Appl. Mater. Interfaces, 4 (2012) 4991–5000.
  20. D. Wang, L. Liu, X. Jiang, J. Yu, X. Chen, Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents, Colloids Surf., A, 466 (2015) 166–173.
  21. H. Wang, Y.G. Liu, G.M. Zeng, X.J. Hu, X. Hu, T.T. Li, H.Y. Li, Y.Q. Wang, L.H. Jiang, Grafting of beta-cyclodextrin to magnetic graphene oxide via ethylenediamine and application for Cr(VI) removal, Carbohydr. Polym., 113 (2014) 166–173.
  22. Y. Chen, S. Cao, L. Zhang, C. Xi, X. Li, Z. Chen, G. Wang, Preparation of size-controlled magnetite nanoparticles with a graphene and polymeric ionic liquid coating for the quick, easy, cheap, effective, rugged and safe extraction of preservatives from vegetables, J. Chromatogr. A, 1448 (2016) 9–19.
  23. Y.X. Ma, W.J. Shao, W. Sun, Y.L. Kou, X. Li, H.P. Yang, One-step fabrication of β-cyclodextrin modified magnetic graphene oxide nanohybrids for adsorption of Pb(II), Cu(II) and methylene blue in aqueous solutions, Appl. Surf. Sci., 459 (2018) 544–553.
  24. R. Randazzo, A.D. Mauro, A. D’Urso, G.C. Messina, G. Compagnini, V. Villari, N. Micali, R. Purrello, M.E. Fragala, Hierarchical effect behinds the supramolecular chirality of silver(I)-cysteine coordination polymers, ACS J. Phys. Chem. B, 119 (2015) 4898–4904.
  25. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, C. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
  26. L. Cui, Y. Wang, L. Gao, L. Hu, L. Yan, Q. Wei, B. Du, EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: adsorption mechanism and separation property, Chem. Eng. J., 281 (2015) 1–10.
  27. R. Ghosh, D. Ekka, B. Rajbanshi, A. Yasmina, M.N. Roya, Synthesis, characterization of 1-butyl-4-methylpyridinium lauryl sulfate and its inclusion phenomenon with β-cyclodextrin for enhanced applications, Colloids Surf., A, 548 (2018) 206–217.
  28. L. Lin, C. Zou, Kinetic and thermodynamic study of magnetic separable β-cyclodextrin inclusion complex with organic phosphoric acid applied to removal of Hg2+, ACS J. Chem. Eng. Data, 62 (2017) 762–772.
  29. T. Guo, A.H. Bedane, Y. Pan, B. Shirani, H.N. Xiao, M. Eic, Adsorption characteristics of carbon dioxide gas on a solid acid derivative of β-cyclodextrin, ACS Energy Fuel, 31 (2017) 4186–4192.
  30. M. Munir, M.F. Naza, M.N. Zafar, M. Zubair, M. Ashfaq, A. Hosseini-Bandegharaei, S.U. Khan, A. Ahmad, Effective adsorptive removal of methylene blue from water by didodecyldimethylammonium bromide-modified brown clay, ACS Omega, 5 (2020) 16711–16721.
  31. R.M. Novais, J. Carvalheiras, D.M. Tobaldi, M.P. Seabra, R.C. Pullar, J.A. Labrincha, Synthesis of porous biomass fly ash-based geopolymer spheres for efficient removal of methylene blue from wastewaters, J. Cleaner Prod., 207 (2019) 350–362.
  32. R. Sedghi, B. Heidari, M. Yassari, Novel molecularly imprinted polymer based on beta-cyclodextrin@graphene oxide: synthesis and application for selective diphenylamine determination, J. Colloid Interface Sci., 503 (2017) 47–56.
  33. D.V. Quang, J.E. Lee, J.K. Kim, Y.N. Kim, G.N. Shao, H.K. Kim, A gentle method to graft thiol-functional groups onto silica gel for adsorption of silver ions and immobilization of silver nanoparticles, Powder Technol., 235 (2013) 221–227.
  34. M. Liu, B. Zhang, H. Wang, F. Zhao, Y. Chen, Q. Sun, Facile crosslinking synthesis of hyperbranch-substrate nanonetwork magnetite nanocomposite for the fast and highly efficient removal of lead ions and anionic dyes from aqueous solutions, RSC Adv., 6 (2016) 67057–67071.
  35. T. Mahlangu, R. Das, L.K. Abia, M. Onyango, S.S. Ray, A. Maity, Thiol-modified magnetic polypyrrole nanocomposite: an effective adsorbent for the adsorption of silver ions from aqueous solution and subsequent water disinfection by silverladen nanocomposite, Chem. Eng. J., 360 (2019) 423–434.
  36. L.A. Romero-Cano, H. García-Rosero, M. del Olmo-Iruela, F. Carrasco-Marín, L.V. González-Gutiérrez, Use of carbon paste electrodes as a novel strategy to study adsorption mechanism of silver ions onto functionalized grapefruit peel, J. Electroanal. Chem., 830–831 (2018) 20–26.
  37. P. Liu, X. Wang, L. Tian, B. He, X. Lv, X. Li, C. Wang, L. Song, Adsorption of silver ion from the aqueous solution using a polyvinylidene fluoride functional membrane bearing thiourea groups, J. Water Process Eng., 34 (2020) 101184–101194.
  38. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  39. J. Febrianto, A.N. Kosasih, J. Sunarso, Y.H. Ju, N. Indraswati, S. Ismadji, Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies, J. Hazard. Mater., 162 (2009) 616–645.
  40. H. Tang, W. Zhou, L. Zhang, Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels, J. Hazard. Mater., 209–210 (2012) 218–225.
  41. Z. Li, X. Huang, K. Wu, Y. Jiao, C. Zhou, Fabrication of regular macro-mesoporous reduced graphene aerogel beads with ultra-high mechanical property for efficient bilirubin adsorption, Mater. Sci. Eng. C., 106 (2020) 110282, doi: 10.1016/j. msec.2019.110282.
  42. S.H. Shaikh, S.A. Kumar, Polyhydroxamic acid functionalized sorbent for effective removal of chromium from ground water and chromic acid cleaning bath, Chem. Eng. J., 326 (2017) 318–328.
  43. N. Tang, C.G. Niu, X.T. Li, C. Liang, H. Guo, L.S. Lin, C.W. Zheng, G.M. Zeng, Efficient removal of Cd2+ and Pb2+ from aqueous solution with amino- and thiol-functionalized activated carbon: isotherm and kinetics modeling, Sci. Total Environ., 635 (2018) 1331–1344.
  44. W.H. Cheung, Y.S. Szeto, G. McKay, Intraparticle diffusion processes during acid dye adsorption onto chitosan, Bioresour. Technol., 98 (2007) 2897–2904.
  45. L. Zhang, G. Zhang, S. Wang, J.H. Peng, W. Cui, Sulfoethyl functionalized silica nanoparticle as an adsorbent to selectively adsorbe silver ions from aqueous solutions, J. Taiwan Inst. Chem. Eng., 71 (2017) 330–337.
  46. C.H. Yen, H.L. Lien, J.S. Chung, H.D. Yeh, Adsorption of precious metals in water by dendrimer modified magnetic nanoparticles, J. Hazard. Mater., 322 (2017) 215–222.
  47. N. Jalilian, H. Ebrahimzadeh, A.A. Asgharinezhad, K. Molaei, Extraction and determination of trace amounts of gold(III), palladium(II), platinum(II) and silver(I) with the aid of a magnetic nanosorbent made from Fe3O4-decorated and silica-coated graphene oxide modified with a polypyrrolepolythiophene copolymer, Microchim. Acta, 184 (2017) 2191–2200.
  48. M. Ghanei-Motlagh, M. Fayazi, M.A. Taher, A. Jalalinejad, Application of magnetic nanocomposite modified with a thiourea based ligand for the preconcentration and trace detection of silver ions(I) by electrothermal atomic absorption spectrometry, Chem. Eng. J., 290 (2016) 53–62.
  49. R, sedghi, M, Shojaee, M, Behbahani, M.Z. Nabid, Application of magnetic nanoparticles modified with poly (2-amino thiophenol) as a sorbent for solid phase extraction and trace detection of lead, copper and silver ions in food matrices, RSC Adv., 5 (2015) 67418–67426.
  50. X. Yue, F. Jiang, D. Zhang, H. Lin, Y. Chen, Preparation of adsorbent based on cotton fiber for removal of dyes, Fibers Polym., 18 (2017) 2102–2110.
  51. Y. Chen, Y. Ma, W. Lu, Y. Guo, Y. Zhu, H. Lu, Y. Song, Environmentally friendly gelatin/β-cyclodextrin composite fiber adsorbents for the efficient removal of dyes from wastewater, Molecules, 23 (2018) 2473–2489.
  52. R. Guo, R. Wang, J. Yin, T. Jiao, H. Huang, X. Zhao, L. Zhang, Q. Li, J. Zhou, Q. Peng, Fabrication and highly efficient dye removal characterization of beta-cyclodextrin-based composite polymer fibers by electrospinning, Nanomaterials, 9 (2019) 127–143.
  53. V. Kumar, P. Saharan, A.K. Sharma, A. Umar, I. Kaushal, A. Mittal, Y. Al-Hadeethi, B. Rashad, Silver doped manganese oxide-carbon nanotube nanocomposite for enhanced dyesequestration: Isotherm studies and RSM modelling approach, Ceram. Int., 46 (2020) 10309–10319.
  54. Q.S. Huang, W. Wu, W. Wei, B.J. Ni, Polyethylenimine modified potassium tungsten oxide adsorbent for highly efficient Ag+ removal and valuable Ag0 recovery, Sci. Total Environ., 692 (2019) 1048–1056.