References

  1. N.S. Bryan, D.D. Alexander, J.R. Coughlin, A.L. Milkowski, P. Boffetta, Ingested nitrate and nitrite and stomach cancer risk: an updated review, Food Chem. Toxicol., 50 (2012) 3646–3665.
  2. B.Q. Qin, G. Gao, G.W. Zhu, Y.L. Zhang, Y.Z. Song, X.M. Tang, H. Xu, J.M. Deng, Lake eutrophication and its ecosystem response, Chin. Sci. Bull., 58 (2013) 961–970.
  3. J. Sandor, I. Kiss, O. Farkas, I. Ember, Association between gastric cancer mortality and nitrate content of drinking water: ecological study on small area inequalities, Eur. J. Epidemiol., 17 (2001) 443–447.
  4. M. Ashfaq, Y. Li, Y.W. Wang, W.J. Chen, H. Wang, X.Q. Chen, W. Wu, Z.Y. Huang, C.-P. Yu, Q. Sun, Occurrence, fate, and mass balance of different classes of pharmaceuticals and personal care products in an anaerobic-anoxic-oxic wastewater treatment plant in Xiamen, China, Water Res., 123 (2017) 655–667.
  5. B.Z. Gong, Y.M. Wang, J.L. Wang, W. Huang, J. Zhou, Q. He, Intensified nitrogen and phosphorus removal by embedding electrolysis in an anaerobic-anoxic-oxic reactor treating low carbon/nitrogen wastewater, Bioresour. Technol., 256 (2018) 562–565.
  6. S.N. Xu, M. Bernards, Z.Q. Hu, Evaluation of anaerobic/anoxic/oxic (A2/O) and reverse A2/O processes in biological nutrient removal, Water Environ. Res., 86 (2014) 2186–2193.
  7. J. Zhou, J.Q. Gao, Y.F. Liu, S. Xiao, R.Q. Zhang, Z.Y. Zhang, Contaminant removal performances on domestic sewage using modified anoxic/anaerobic/oxic process and micro-electrolysis, Environ. Technol., 34 (2013) 2773–2779.
  8. F.Y. Sun, P. Li, J. Li, H.J. Li, Q.M. Ou, T.T. Sun, Z.J. Dong, Hybrid biofilm-membrane bioreactor (Bf-MBR) for minimization of bulk liquid-phase organic substances and its positive effect on membrane permeability, Bioresour. Technol., 198 (2015) 772–780.
  9. V. Hoang, R. Delatolla, T. Abujamel, W. Mottawea, A. Gadbois, E. Laflamme, A. Stintzi, Nitrifying moving bed biofilm reactor (MBBR) biofilm and biomass response to long term exposure to 1°C, Water Res., 49 (2014) 215–224.
  10. P. Regmi, B. Holgate, M.W. Miller, H. Park, K. Chandran, B. Wett, S. Murthy, C.B. Bott, Nitrogen polishing in a fully anoxic anammox MBBR treating mainstream nitritation-denitritation effluent, Biotechnol. Bioeng., 113 (2016) 635–642.
  11. A. Ebrahimi, G.D. Najafpour, M. Nikzad, Evaluation of treatability of high strength wastewater in a three stage-rotating biological contactor, J. Environ. Eng. Landscape Manage., 25 (2017) 234–240.
  12. M.G. Kiran, K. Pakshirajan, G. Das, A new application of anaerobic rotating biological contactor reactor for heavy metal removal under sulfate reducing condition, Chem. Eng. J., 321 (2017) 67–75.
  13. D. Kulikowska, T. Jóźwiak, M. Kuczajowska-Zadrożna, T. Pokój, Z. Gusiatin, Efficiency of nitrification and organics removal from municipal landfill leachate in the rotating biological contactor (RBC), Desal. Water Treat., 33 (2011) 125–131.
  14. S.A. Mirbagheri, S. Ahmadi, N. Biglari-Joo, Denitrification of nitrate-contaminated groundwater in an anoxic rotating biological contactor: a case study, Desal. Water Treat., 57 (2016) 4694–4700.
  15. V. Singh, A.K. Mittal, Characterization of biofilm of a rotating biological contactor treating synthetic wastewater, Water Sci. Technol., 66 (2012) 429–437.
  16. S. Cortez, P. Teixeira, R. Oliveira, M. Mota, Rotating biological contactors: a review on main factors affecting performance, Rev. Environ. Sci. Biotechnol., 7 (2008) 155–172.
  17. G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett., 17 (2019) 145–155.
  18. Q. Lu, H.Y. Wu, H.Y. Li, D.H. Yang, Enhanced biological nutrient removal in modified carbon source division anaerobic anoxic oxic process with return activated sludge pre-concentration, Chin. J. Chem. Eng., 23 (2015) 1027–1034.
  19. Y.Z. Peng, X.L. Wang, W.M. Wu, J. Li, J. Fan, Optimisation of anaerobic/anoxic/oxic process to improve performance and reduce operating costs, J. Chem. Technol. Biotechnol., 81 (2006) 1391–1397.
  20. C.W. Wang, J. Li, B.H. Zhao, Y.D. Yue, Y.L. Wang, Effect of long sludge retention time on biological phosphorus removal in A2/O process, J. Residuals Sci. Technol., 12 (2015) S67–S73.
  21. B.Z. Xie, B.J. Liu, Y. Yi, L.G. Yang, D.W. Liang, Y. Zhu, H. Liu, Microbiological mechanism of the improved nitrogen and phosphorus removal by embedding microbial fuel cell in Anaerobic–Anoxic–Oxic wastewater treatment process, Bioresour. Technol., 207 (2016) 109–117.
  22. Z.F. Han, P.Y. Lv, T.M. Gao, J.X. Luo, X.Z. Liu, M.J. Song, Z.X. Li, Y.X. Zhang, Z.H. Bai. Diversity of culturable aerobic denitrifying bacteria in a rotating biological contactor combined with anaerobic-anoxic-oxic-oxic wastewater treatment system, Desal. Water Treat., 188 (2020) 356–374.
  23. MEE.P.R.C., Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002), China, 2016.
  24. R.I. Griffiths, A.S. Whiteley, A.G. O’Donnell, M.J. Bailey, Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition, Appl. Environ. Microbiol., 66 (2000) 5488–5491.
  25. K.R. Paithankar, K.S. Prasad, Precipitation of DNA by polyethylene glycol and ethanol, Nucleic Acids Res., 19 (1991) 1346, doi: 10.1093/nar/19.6.1346.
  26. P.Y. Lv, J.X. Luo, X.L. Zhuang, D.Q. Zhang, Z.B. Huang, Z.H. Bai, Diversity of culturable aerobic denitrifying bacteria in the sediment, water and biofilms in Liangshui River of Beijing, China, Sci. Rep., 7 (2017) 10032, doi: 10.1038/ s41598-017-09556-9.
  27. N.A. Bokulich, S. Subramanian, J.J. Faith, D. Gevers, J.I. Gordon, R. Knight, D.A. Mills, J.G. Caporaso, Qualityfiltering vastly improves diversity estimates from Illumina amplicon sequencing, Nat. Methods, 10 (2013) 57–59.
  28. T. Magoč, S.L. Salzberg, FLASH: fast length adjustment of short reads to improve genome assemblies, Bioinformatics, 27 (2011) 2957–2963.
  29. J.G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Peña, J.K. Goodrich, J.I. Gordon, G.A. Huttley, S.T. Kelley, D. Knights, J.E. Koenig, R.E. Ley, C.A. Lozupone, D. McDonald, B.D. Muegge, M. Pirrung, J. Reeder, J.R. Sevinsky, P.J. Turnbaugh, W.A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, R. Knight, QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 7 (2010) 335–336.
  30. R.C. Edgar, UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nat. Methods, 10 (2013) 996–998.
  31. C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, F.O. Glöckner, The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res., 41 (2013) D590–D596.
  32. Q. Wang, G.M. Garrity, J.M. Tiedje, J.R. Cole, Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl. Environ. Microbiol., 73 (2007) 5261–5267.
  33. R. Keluskar, A. Nerurkar, A. Desai, Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry, Bioresour. Technol., 130 (2013) 390–397.
  34. D.X. Fang, G. Zhao, X.Y. Xu, Q. Zhang, Q.S. Shen, Z.Y. Fang, L.P. Huang, F.Y. Ji, Microbial community structures and functions of wastewater treatment systems in plateau and cold regions, Bioresour. Technol., 249 (2018) 684–693.
  35. M.D. Seib, K.J. Berg, D.H. Zitomer, Influent wastewater microbiota and temperature influence anaerobic membrane bioreactor microbial community, Bioresour. Technol., 216 (2016) 446–452.
  36. H. Zhou, G.R. Xu, Integrated effects of temperature and COD/N on an up-flow anaerobic filter-biological aerated filter: performance, biofilm characteristics and microbial community, Bioresour. Technol., 293 (2019) 122004, doi: 10.1016/j. biortech.2019.122004.
  37. W.J. Gao, X. Qu, K.T. Leung, B.Q. Liao, Influence of temperature and temperature shock on sludge properties, cake layer structure, and membrane fouling in a submerged anaerobic membrane bioreactor, J. Membr. Sci., 421 (2012) 131–144.
  38. A. Ziembińska-Buczyńska, S. Ciesielski, S. Żabczyński, G. Cema, Bacterial community structure in rotating biological contactor treating coke wastewater in relation to medium composition, Environ. Sci. Pollut. Res., 26 (2019) 19171–19179.
  39. M. Saunders, M. Albertsen, J. Vollertsen, P.H. Nielsen, The activated sludge ecosystem contains a core community of abundant organisms, ISME J., 10 (2016) 11–20.
  40. N.M. Shchegolkova, G.S. Krasnov, A.A. Belova, A.A. Dmitriev, S.L. Kharitonov, K.M. Klimina, N.V. Melnikova, A.V. Kudryavtseva, Microbial community structure of activated sludge in treatment plants with different wastewater compositions, Front. Microbiol., 7 (2016) 90, doi: 10.3389/fmicb.2016.00090.
  41. X.D. Xin, J.G. He, Y.F. Wang, J.H. Feng, W. Qiu, Role of aeration intensity on performance and microbial community profiles in a sequencing batch reaction kettle (SBRK) for wastewater nutrients rapid removal, Bioresour. Technol., 201 (2016) 140–147.
  42. B. Ji, X.C. Zhang, S.F. Zhang, H.J. Song, Z.H. Kong, Insights into the bacterial species and communities of a full-scale anaerobic/ anoxic/oxic wastewater treatment plant by using thirdgeneration sequencing, J. Biosci. Bioeng., 128 (2019) 744–750.
  43. X.X. Peng, F. Guo, F. Ju, T. Zhang, Shifts in the microbial community, nitrifiers and denitrifiers in the biofilm in a fullscale rotating biological contactor, Environ. Sci. Technol., 48 (2014) 8044–8052.
  44. J. Wang, K.M. Chon, X.H. Ren, Y.Y. Kou, K.-J. Chae, Y.S. Piao, Effects of beneficial microorganisms on nutrient removal and excess sludge production in an anaerobic-anoxic/oxic (A2O) process for municipal wastewater treatment, Bioresour. Technol., 281(2019a) 90–98.
  45. Q. Cao, X.F. Liu, Y. Ran, Z.D. Li, D. Li, Methane oxidation coupled to denitrification under microaerobic and hypoxic conditions in leach bed bioreactors, Sci. Total Environ., 649 (2019) 1–11.
  46. H.F. Li, F. Liu, P. Luo, X. Chen, J.L. Chen, Z.R. Huang, J.W. Peng, R.L. Xiao, J.S. Wu, Stimulation of optimized influent C:N ratios on nitrogen removal in surface flow constructed wetlands: performance and microbial mechanisms, Sci. Total Environ., 694 (2019) 133575, doi: 10.1016/j.scitotenv.2019.07.381.
  47. X. Yan, D.L. Guo, D.Z. Qiu, S.K. Zheng, M.K. Jia, M.J. Zhang, J.J. Liu, X.F. Su, J.H. Sun, Effect of mixed liquor suspended solid concentration on nitrous oxide emission from an anoxic/ oxic sequencing bioreactor, Desal. Water Treat., 163 (2019) 48–56.
  48. W.M. Zhang, C.X. Yu, X.J. Wang, L. Hai, Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting, Bioresour. Technol., (2020) 122410, doi: 10.1016/j. biortech.2019.122410.
  49. W.H. Zhao, Y.Z. Peng, M.X. Wang, Y. Huang, X.Y. Li, Nutrient removal and microbial community structure variation in the two-sludge system treating low carbon/nitrogen domestic wastewater, Bioresour. Technol., 294 (2019) 122161, doi: 10.1016/j.biortech.2019.122161.
  50. L. Wang, G.C. Li, Y.M. Li, Enhanced treatment of composite industrial wastewater using anaerobic-anoxic-oxic membrane bioreactor: performance, membrane fouling and microbial community, J. Chem. Technol. Biotechnol., 94 (2019b) 2292–2304.
  51. W.T. Zhao, Q. Sui, X.B. Mei, X.T. Cheng, Efficient elimination of sulfonamides by an anaerobic/anoxic/oxic-membrane bioreactor process: performance and influence of redox condition, Sci. Total Environ., 633 (2018) 668–676.
  52. E.N.P. Courtens, N. Boon, H. De Clippeleir, K. Berckmoes, M. Mosquera, D. Seuntjens, S.E. Vlaeminck, Control of nitratation in an oxygen-limited autotrophic nitrification/ denitrification rotating biological contactor through disc immersion level variation, Bioresour. Technol., 155 (2014) 182–188.
  53. D. Wang, G.W. Wang, F.L. Yang, C.F. Liu, L. Kong, Y. Liu, Treatment of municipal sewage with low carbon-to-nitrogen ratio via simultaneous partial nitrification, anaerobic ammonia oxidation, and denitrification (SNAD) in a non-woven rotating biological contactor, Chemosphere, 208 (2018) 854–861.
  54. S.C. Huang, Y.C. Zhu, G.M. Zhang, J.F. Lian, Z.W. Liu, L. Zhang, S. Tian, Effects of low-intensity ultrasound on nitrite accumulation and microbial characteristics during partial nitrification, Sci. Total Environ., 705 (2019) 135985, doi: 10.1016/j. scitotenv.2019.135985.
  55. L.P. Jia, B.H. Jiang, F. Huang, X.M. Hu, Nitrogen removal mechanism and microbial community changes of bioaugmentation subsurface wastewater infiltration system, Bioresour. Technol., 294 (2019) 122140, doi: 10.1016/j.biortech.2019.122140.
  56. J.X. Qiang, Z. Zhou, K.C. Wang, Z. Qiu, H. Zhi, Y. Yuan, Y.B. Zhang, Y.X. Jiang, X.D. Zhao, Z.W. Wang, Q.Y. Wang, Coupling ammonia nitrogen adsorption and regeneration unit with a high-load anoxic/aerobic process to achieve rapid and efficient pollutants removal for wastewater treatment, Water Res., 170 (2019) 115280, doi: 10.1016/j.watres.2019.115280.
  57. J.H. Zhang, Y.Y. Miao, Q. Zhang, Y.W. Sun, L. Wu, Y.Z. Peng, Mechanism of stable sewage nitrogen removal in a partial nitrification-anammox biofilm system at low temperatures: microbial community and EPS analysis, Bioresour. Technol., 297 (2020) 122459, doi: 10.1016/j.biortech.2019.122459.
  58. L. Bastiaens, D. Springael, P. Wattiau, H. Harms, R. deWachter, H. Verachtert, L Diels, Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers, Appl. Environ. Microbiol., 66 (2000) 1834–1843.
  59. B. Boldrin, A. Tiehm, C. Fritzsche, Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp., Appl. Environ. Microbiol., 59 (1993) 1927–1930.
  60. S. Zhu, H.Z. Wu, C.F. Wu, G.L. Qiu, C.H. Feng, C.H. Wei, Structure and function of microbial community involved in a novel full-scale prefix oxic coking wastewater treatment O/H/O system, Water Res., 164 (2019) 114963, doi: 10.1016/j. watres.2019.114963.
  61. A.F. Duque, V.S. Bessa, P M.L. Castro, Bacterial community dynamics in a rotating biological contactor treating 2-fluorophenol-containing wastewater, J. Ind. Microbiol. Biotechnol., 41 (2014) 97–104.