References

  1. J.E. McMahon, S.K. Price, Water and energy interactions, Annu. Rev. Environ. Resour., 36 (2011) 163–191.
  2. A. Endo, I. Tsurita, K. Burnett, P.M. Orencio, A review of the current state of research on the water, energy, and food nexus, J. Hydrol.: Reg. Stud., 11 (2017) 20–30.
  3. N. Ghaffour, J. Bundschuh, H. Mahmoudi, M.F.A. Goosen, Renewable energy-driven desalination technologies: a comprehensive review on challenges and potential applications of integrated systems, Desalination, 356 (2015) 94–114.
  4. A/RES/70/1 Transforming Our World: The 2030 Agenda for Sustainable Development, Department of Economic and Social Affairs Sustainable Development, United Nations, 2030.
  5. A. Guterres, The Sustainable Development Goals Report 2017, United Nations, New York, 2017. Available at: https://unstats.un.org/sdgs/files/report/2017/ TheSustainableDevelopmentGoalsReport2017.pdf
  6. S. Herrera-León, C. Cruz, A. Kraslawski, L.A. Cisternas, Current situation and major challenges of desalination in Chile, Desal. Water Treat., 171 (2019) 93–104.
  7. Anuario Estadístico de Energía 2019, Comisión Nacional de Energía’, 2019.
  8. D. Saldivia, C. Rosales, R. Barraza, L. Cornejo, Computational analysis for a multi-effect distillation (MED) plant driven by solar energy in Chile, Renewable Energy, 132 (2019) 206–220.
  9. H. Sharon, K.S. Reddy, A review of solar energy driven desalination technologies, Renewable Sustainable Energy Rev., 41 (2015) 1080–1118.
  10. M. Shatat, M. Worall, S. Riffat, Opportunities for solar water desalination worldwide: review, Sustainable Cities Soc., 9 (2013) 67–80.
  11. C. Li, Y. Goswami, E. Stefanakos, Solar assisted sea water desalination: a review, Renewable Sustainable Energy Rev., 19 (2013) 136–163.
  12. G.P. Narayan, M.H. Sharqawy, E.K. Summers, J.H. Lienhard, S.M. Zubair, M.A. Antar, The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production, Renewable Sustainable Energy Rev., 14 (2010) 1187–1201.
  13. E. Mathoulakis, V. Belessiotis, E. Delyannis, Desalination by using alternative energy: review and state of the art, Desalination, 203 (2007) 346–365.
  14. M.T. Ali, H.E.S. Fath, P.R. Armstrong, A comprehensive techno-economical review of indirect solar desalination, Renewable Sustainable Energy Rev., 15 (2011) 4187–4199.
  15. A.E. Kabeel, M.H. Hamed, Z.M. Omara, S.W. Sharshir, Water desalination using a humidification–dehumidification technique—a detailed review, Nat. Resour., 4 (2013) 286–305.
  16. W. Abdelmoez, M.S. Mahmoud, T.E. Farrag, Water desalination using humidification–dehumidification (HDH) technique powered by solar energy: a detailed review, Desal. Water Treat., 52 (2014) 4622–4640.
  17. Y. Zhang, M. Sivakumar, S. Yang, K. Enever, M. Ramezanianpour, Application of solar energy in water treatment processes: a review, Desalination, 428 (2018) 116–145.
  18. K. Srithar, T. Rajaseenivasan, Recent fresh water augmentation techniques in solar still and HDH desalination – a review, Renewable Sustainable Energy Rev., 82 (2018) 629–644.
  19. R. Santosh, T. Arunkumar, R. Velraj, G. Kumaresan, Technological advancements in solar energy driven humidification–dehumidification desalination systems – a review, J. Cleaner Prod., 207 (2019) 826–845.
  20. A. Kasaeian, S. Babaei, M. Jahanpanah, H. Sarrafha, A. Sulaiman Alsagri, S. Ghaffarian, W.-M. Yan, Solar humidification–dehumidification desalination systems: a critical review, Energy Convers. Manage., 201 (2019) 112129, doi: 10.1016/j. enconman.2019.112129.
  21. J. Chen, D. Han, W. He, Y. Liu, J. Gu, Theoretical and experimental analysis of the thermodynamic and economic performance for a packed bed humidifier, Energy Convers. Manage., 206 (2020) 112497, doi: 10.1016/j. enconman.2020.112497.
  22. K. Zhani, H. Ben Bacha, Experimental investigation of a new solar desalination prototype using the humidification–dehumidification principle, Renewable Energy, 35 (2010) 2610–2617.
  23. C. Yamalı, İ. Solmus, A solar desalination system using humidification–dehumidification process: experimental study and comparison with the theoretical results, Desalination, 220 (2008) 538–551.
  24. J.C. Kloppers, D.G. Kröger, A critical investigation into the heat and mass transfer analysis of counterflow wet-cooling towers, Int. J. Heat Mass Transfer, 48 (2005) 765–777.
  25. T. Rajaseenivasan, K. Srithar, Potential of a dual purpose solar collector on humidification–dehumidification desalination system, Desalination, 404 (2017) 35–40.
  26. K. Srithar, T. Rajaseenivasan, Performance analysis on a solar bubble column humidification–dehumidification desalination system, Process Saf. Environ. Prot., 105 (2017) 41–50.
  27. C. Yıldırım, İ. Solmuş, A parametric study on a humidification– dehumidification (HDH) desalination unit powered by solar air and water heaters, Energy Convers. Manage., 86 (2014) 568–575.
  28. W. Gang, H. Zheng, H. Kang, Y. Yang, P. Cheng, Z. Chang, Experimental investigation of a multi-effect isothermal heat with tandem solar desalination system based on humidification– dehumidification processes, Desalination, 378 (2016) 100–107.
  29. C. Muthusamy, K. Srithar, Energy and exergy analysis for a humidification–dehumidification desalination system integrated with multiple inserts, Desalination, 367 (2015) 49–59.
  30. S.W. Sharshir, G. Peng, N. Yang, M.A. Eltawil, M.K.A. Ali, A.E. Kabeel, A hybrid desalination system using humidification–dehumidification and solar stills integrated with evacuated solar water heater, Energy Convers. Manage., 124 (2016) 287–296.
  31. W.F. He, D. Han, W.P. Zhu, C. Ji, Thermo-economic analysis of a water-heated humidification–dehumidification desalination system with waste heat recovery, Energy Convers. Manage., 160 (2018) 182–190.
  32. W.F. He, J.J. Chen, M.R. Zhen, D. Han, Thermodynamic, economic analysis and optimization of a heat pump driven desalination system with open-air humidification– dehumidification configurations, Energy, 174 (2019) 768–778.
  33. A.E. Kabeel, E.M.S. El-Said, A hybrid solar desalination system of air humidification–dehumidification and water flashing evaporation: Part II. Experimental investigation, Desalination, 341 (2014) 50–60.
  34. A.E. Kabeel, M. Abdelgaied, Experimental evaluation of a twostage indirect solar dryer with reheating coupled with HDH desalination system for remote areas, Desalination, 425 (2018) 22–29.
  35. A.E. Kabeel, M. Abdelgaied, Y. Zakaria, Performance evaluation of a solar energy assisted hybrid desiccant air conditioner integrated with HDH desalination system, Energy Convers. Manage., 150 (2017) 382–391.
  36. R. Branke, T.P. Fluri, P.V. Lefort, Combining concentrating solar power with multiple effect distillation at inland locations – an economically viable option for Northern Chile?, AIP Conf. Proc., 2033 (2018) 160001, doi: 10.1063/1.5067160.
  37. C. Mata-Torres, R.A. Escobar, J.M. Cardemil, Y. Simsek, J.A. Matute, Solar polygeneration for electricity production and desalination: case studies in Venezuela and northern Chile, Renewable Energy, 101 (2017) 387–398.
  38. C. Mata-Torres, A. Zurita, J.M. Cardemil, R.A. Escobar, Exergy cost and thermoeconomic analysis of a Rankine Cycle + Multi- Effect Distillation plant considering time-varying conditions, Energy Convers. Manage., 192 (2019) 114–132.
  39. C. Valenzuela, C. Mata-Torres, J.M. Cardemil, R.A. Escobar, CSP + PV hybrid solar plants for power and water cogeneration in northern Chile, Sol. Energy, 157 (2017) 713–726.
  40. C. Mata-Torres, P. Palenzuela, A. Zurita, J.M. Cardemil, D.C. Alarcón-Padilla, R.A. Escobar, Annual thermoeconomic analysis of a Concentrating Solar Power + Photovoltaic + Multi- Effect Distillation plant in northern Chile, Energy Convers. Manage., 213 (2020) 112852, doi: 10.1016/j. enconman.2020.112852.
  41. F. Suárez, R. Urtubia, Tackling the water-energy nexus: an assessment of membrane distillation driven by salt-gradient solar ponds, Clean Technol. Environ. Policy, 18 (2016) 1697–1712.
  42. J.A. Andrés-Mañas, P. Palenzuela, L. Cornejo, D.C. Alarcón- Padilla, G. Acién, G. Zaragoza, Preliminary evaluation of the use of vacuum membrane distillation for the production of drinking water in Arica (Chile), Desal. Water Treat., 61 (2017) 160–169.
  43. C. Hernández, M. Reyes, R. Barraza, U. Rheinschmidt, D. Saldivia, R. Vasquez-Padilla, Experimental and numerical evaluation of a humidification–dehumidification desalination unit driven by solar energy, AIP Conf. Proc., 2033 (2018) 160003, doi: 10.1063/1.5067162.
  44. S.A. Klein, Engineering Equation Solver, F-Chart Software, 2017.
  45. G. Nellis, S.A. Klein, Heat Transfer, 1 paperback ed., Cambridge University Press, Cambridge, 2012.
  46. F. Bosnjakovic, Technische Thermodynamik, Verlag Theodor Steinkopff, 1965.
  47. R.W. Hyland, A. Wexler, Formulations for thermodymnamic properties of the saturated phases of H2O from 173.15K to 473.15K, Ashrae Trans. A, 2 (1983) 500–513.
  48. J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, 4th ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2013.
  49. I.M. Sobol′, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simul., 55 (2001) 271–280.
  50. A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola, Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Comput. Phys. Commun., 181 (2010) 259–270.
  51. SHOA, Servicio Hidrografico y Oceanografico de la Armada, Temperatura Superficial del Mar (TSM), 2018. Available at: http://www.shoa.cl/servicios/TSM/tsm.php
  52. P. Sarmiento, Registro Solarimétrico: Irradiancia Solar en Territorios de la República de Chile, CNE/PNUD/UTFSM, 2008.
  53. (CR)2, Explorador Climático, Centro de la Ciencia del Clima y Resilencia (CR)2, n.d. Available at: http://explorador.cr2.cl/ (accessed July 6, 2020).
  54. K.M. Knight, S.A. Klein, J.A. Duffie, A methodology for the synthesis of hourly weather data, Sol. Energy, 46 (1991) 109–120.