References
- J.E. McMahon, S.K. Price, Water and energy interactions,
Annu. Rev. Environ. Resour., 36 (2011) 163–191.
- A. Endo, I. Tsurita, K. Burnett, P.M. Orencio, A review of the
current state of research on the water, energy, and food nexus,
J. Hydrol.: Reg. Stud., 11 (2017) 20–30.
- N. Ghaffour, J. Bundschuh, H. Mahmoudi, M.F.A. Goosen,
Renewable energy-driven desalination technologies:
a comprehensive review on challenges and potential
applications of integrated systems, Desalination, 356 (2015)
94–114.
- A/RES/70/1 Transforming Our World: The 2030 Agenda for
Sustainable Development, Department of Economic and Social
Affairs Sustainable Development, United Nations, 2030.
- A. Guterres, The Sustainable Development Goals
Report 2017, United Nations, New York, 2017.
Available at: https://unstats.un.org/sdgs/files/report/2017/
TheSustainableDevelopmentGoalsReport2017.pdf
- S. Herrera-León, C. Cruz, A. Kraslawski, L.A. Cisternas,
Current situation and major challenges of desalination in
Chile, Desal. Water Treat., 171 (2019) 93–104.
- Anuario Estadístico de Energía 2019, Comisión Nacional de
Energía’, 2019.
- D. Saldivia, C. Rosales, R. Barraza, L. Cornejo,
Computational analysis for a multi-effect distillation (MED)
plant driven by solar energy in Chile, Renewable Energy,
132 (2019) 206–220.
- H. Sharon, K.S. Reddy, A review of solar energy driven
desalination technologies, Renewable Sustainable Energy Rev.,
41 (2015) 1080–1118.
- M. Shatat, M. Worall, S. Riffat, Opportunities for solar water
desalination worldwide: review, Sustainable Cities Soc.,
9 (2013) 67–80.
- C. Li, Y. Goswami, E. Stefanakos, Solar assisted sea water
desalination: a review, Renewable Sustainable Energy Rev.,
19 (2013) 136–163.
- G.P. Narayan, M.H. Sharqawy, E.K. Summers, J.H. Lienhard,
S.M. Zubair, M.A. Antar, The potential of solar-driven
humidification–dehumidification desalination for
small-scale decentralized water production, Renewable
Sustainable Energy Rev., 14 (2010) 1187–1201.
- E. Mathoulakis, V. Belessiotis, E. Delyannis, Desalination
by using alternative energy: review and state of the art,
Desalination, 203 (2007) 346–365.
- M.T. Ali, H.E.S. Fath, P.R. Armstrong, A comprehensive
techno-economical review of indirect solar desalination,
Renewable Sustainable Energy Rev., 15 (2011) 4187–4199.
- A.E. Kabeel, M.H. Hamed, Z.M. Omara, S.W. Sharshir,
Water desalination using a humidification–dehumidification
technique—a detailed review, Nat. Resour., 4 (2013) 286–305.
- W. Abdelmoez, M.S. Mahmoud, T.E. Farrag, Water desalination
using humidification–dehumidification (HDH) technique
powered by solar energy: a detailed review, Desal. Water
Treat., 52 (2014) 4622–4640.
- Y. Zhang, M. Sivakumar, S. Yang, K. Enever, M. Ramezanianpour,
Application of solar energy in water treatment processes: a
review, Desalination, 428 (2018) 116–145.
- K. Srithar, T. Rajaseenivasan, Recent fresh water augmentation
techniques in solar still and HDH desalination – a review,
Renewable Sustainable Energy Rev., 82 (2018) 629–644.
- R. Santosh, T. Arunkumar, R. Velraj, G. Kumaresan,
Technological advancements in solar energy driven
humidification–dehumidification desalination systems – a
review, J. Cleaner Prod., 207 (2019) 826–845.
- A. Kasaeian, S. Babaei, M. Jahanpanah, H. Sarrafha, A. Sulaiman
Alsagri, S. Ghaffarian, W.-M. Yan, Solar humidification–dehumidification desalination systems: a critical review,
Energy Convers. Manage., 201 (2019) 112129, doi: 10.1016/j.
enconman.2019.112129.
- J. Chen, D. Han, W. He, Y. Liu, J. Gu, Theoretical and
experimental analysis of the thermodynamic and economic
performance for a packed bed humidifier, Energy
Convers. Manage., 206 (2020) 112497, doi: 10.1016/j.
enconman.2020.112497.
- K. Zhani, H. Ben Bacha, Experimental investigation of a
new solar desalination prototype using the humidification–dehumidification principle, Renewable Energy, 35 (2010)
2610–2617.
- C. Yamalı, İ. Solmus, A solar desalination system using
humidification–dehumidification process: experimental study
and comparison with the theoretical results, Desalination,
220 (2008) 538–551.
- J.C. Kloppers, D.G. Kröger, A critical investigation into the
heat and mass transfer analysis of counterflow wet-cooling
towers, Int. J. Heat Mass Transfer, 48 (2005) 765–777.
- T. Rajaseenivasan, K. Srithar, Potential of a dual purpose solar
collector on humidification–dehumidification desalination
system, Desalination, 404 (2017) 35–40.
- K. Srithar, T. Rajaseenivasan, Performance analysis on a solar
bubble column humidification–dehumidification desalination
system, Process Saf. Environ. Prot., 105 (2017) 41–50.
- C. Yıldırım, İ. Solmuş, A parametric study on a humidification–
dehumidification (HDH) desalination unit powered by solar
air and water heaters, Energy Convers. Manage., 86 (2014)
568–575.
- W. Gang, H. Zheng, H. Kang, Y. Yang, P. Cheng, Z. Chang,
Experimental investigation of a multi-effect isothermal heat
with tandem solar desalination system based on humidification–
dehumidification processes, Desalination, 378 (2016) 100–107.
- C. Muthusamy, K. Srithar, Energy and exergy analysis for
a humidification–dehumidification desalination system
integrated with multiple inserts, Desalination, 367 (2015) 49–59.
- S.W. Sharshir, G. Peng, N. Yang, M.A. Eltawil, M.K.A.
Ali, A.E. Kabeel, A hybrid desalination system using
humidification–dehumidification and solar stills integrated
with evacuated solar water heater, Energy Convers. Manage.,
124 (2016) 287–296.
- W.F. He, D. Han, W.P. Zhu, C. Ji, Thermo-economic analysis of
a water-heated humidification–dehumidification desalination
system with waste heat recovery, Energy Convers. Manage.,
160 (2018) 182–190.
- W.F. He, J.J. Chen, M.R. Zhen, D. Han, Thermodynamic,
economic analysis and optimization of a heat pump
driven desalination system with open-air humidification–
dehumidification configurations, Energy, 174 (2019) 768–778.
- A.E. Kabeel, E.M.S. El-Said, A hybrid solar desalination system
of air humidification–dehumidification and water flashing
evaporation: Part II. Experimental investigation, Desalination,
341 (2014) 50–60.
- A.E. Kabeel, M. Abdelgaied, Experimental evaluation of a twostage
indirect solar dryer with reheating coupled with HDH
desalination system for remote areas, Desalination, 425 (2018)
22–29.
- A.E. Kabeel, M. Abdelgaied, Y. Zakaria, Performance evaluation
of a solar energy assisted hybrid desiccant air conditioner
integrated with HDH desalination system, Energy Convers.
Manage., 150 (2017) 382–391.
- R. Branke, T.P. Fluri, P.V. Lefort, Combining concentrating
solar power with multiple effect distillation at inland
locations – an economically viable option for Northern Chile?,
AIP Conf. Proc., 2033 (2018) 160001, doi: 10.1063/1.5067160.
- C. Mata-Torres, R.A. Escobar, J.M. Cardemil, Y. Simsek,
J.A. Matute, Solar polygeneration for electricity production
and desalination: case studies in Venezuela and northern Chile,
Renewable Energy, 101 (2017) 387–398.
- C. Mata-Torres, A. Zurita, J.M. Cardemil, R.A. Escobar, Exergy
cost and thermoeconomic analysis of a Rankine Cycle + Multi-
Effect Distillation plant considering time-varying conditions,
Energy Convers. Manage., 192 (2019) 114–132.
- C. Valenzuela, C. Mata-Torres, J.M. Cardemil, R.A. Escobar,
CSP + PV hybrid solar plants for power and water cogeneration
in northern Chile, Sol. Energy, 157 (2017) 713–726.
- C. Mata-Torres, P. Palenzuela, A. Zurita, J.M. Cardemil,
D.C. Alarcón-Padilla, R.A. Escobar, Annual thermoeconomic
analysis of a Concentrating Solar Power + Photovoltaic + Multi-
Effect Distillation plant in northern Chile, Energy
Convers. Manage., 213 (2020) 112852, doi: 10.1016/j.
enconman.2020.112852.
- F. Suárez, R. Urtubia, Tackling the water-energy nexus: an
assessment of membrane distillation driven by salt-gradient
solar ponds, Clean Technol. Environ. Policy, 18 (2016) 1697–1712.
- J.A. Andrés-Mañas, P. Palenzuela, L. Cornejo, D.C. Alarcón-
Padilla, G. Acién, G. Zaragoza, Preliminary evaluation of the
use of vacuum membrane distillation for the production of
drinking water in Arica (Chile), Desal. Water Treat., 61 (2017)
160–169.
- C. Hernández, M. Reyes, R. Barraza, U. Rheinschmidt,
D. Saldivia, R. Vasquez-Padilla, Experimental and numerical
evaluation of a humidification–dehumidification desalination
unit driven by solar energy, AIP Conf. Proc., 2033 (2018) 160003,
doi: 10.1063/1.5067162.
- S.A. Klein, Engineering Equation Solver, F-Chart Software, 2017.
- G. Nellis, S.A. Klein, Heat Transfer, 1 paperback ed., Cambridge
University Press, Cambridge, 2012.
- F. Bosnjakovic, Technische Thermodynamik, Verlag Theodor
Steinkopff, 1965.
- R.W. Hyland, A. Wexler, Formulations for thermodymnamic
properties of the saturated phases of H2O from 173.15K to
473.15K, Ashrae Trans. A, 2 (1983) 500–513.
- J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal
Processes, 4th ed., John Wiley & Sons, Inc., Hoboken, New
Jersey, 2013.
- I.M. Sobol′, Global sensitivity indices for nonlinear
mathematical models and their Monte Carlo estimates, Math.
Comput. Simul., 55 (2001) 271–280.
- A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto,
S. Tarantola, Variance based sensitivity analysis of model
output. Design and estimator for the total sensitivity index,
Comput. Phys. Commun., 181 (2010) 259–270.
- SHOA, Servicio Hidrografico y Oceanografico de la Armada,
Temperatura Superficial del Mar (TSM), 2018. Available at:
http://www.shoa.cl/servicios/TSM/tsm.php
- P. Sarmiento, Registro Solarimétrico: Irradiancia Solar en
Territorios de la República de Chile, CNE/PNUD/UTFSM, 2008.
- (CR)2, Explorador Climático, Centro de la Ciencia del Clima
y Resilencia (CR)2, n.d. Available at: http://explorador.cr2.cl/
(accessed July 6, 2020).
- K.M. Knight, S.A. Klein, J.A. Duffie, A methodology for the
synthesis of hourly weather data, Sol. Energy, 46 (1991) 109–120.