References
- S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian,
A. Najafi, E. Mofarrah, Phenol removal from industrial
wastewaters: a short review, Desal. Water Treat., 53 (2015)
2215–2234.
- Z. Rappoport, The Chemistry of Phenols, Vol. 2, Set John Wiley
& Sons, West Sussex, England, 2004.
- A. Almasi, M. Mahmoudi, M. Mohammadi, A. Dargahi,
H. Biglari, Optimizing biological treatment of petroleum
industry wastewater in a facultative stabilization pond for
simultaneous removal of carbon and phenol, Toxin Rev.,
38 (2019) 1–9, doi: 10.1080/15569543.2019.1573433.
- A. Almasi, A. Dargahi, A. Amrane, M. Fazlzadeh, M. Soltanian,
A. Hashemian, Effect of molasses addition as biodegradable
material on phenol removal under anaerobic conditions,
Environ. Eng. Manage. J., 17 (2018) 1475–1482.
- A. Dargahi, M. Mohammadi, F. Amirian, A. Karami, A. Almasi,
Phenol removal from oil refinery wastewater using anaerobic
stabilization pond modeling and process optimization using
response surface methodology (RSM), Desal. Water Treat.,
87 (2017) 199–208.
- R. Shokoohi, H. Movahedian, A. Dargahi, A.J. Jafari,
A. Parvaresh, Survey on efficiency of BF/AS integrated
biological system in phenol removal of wastewater, Desal.
Water Treat., 82 (2017) 315–321.
- A.K. Rathoure, Toxicity and Waste Management Using
Bioremediation, IGI global, Hershey PA, USA, 2015.
- E. Ferrer-Polonio, N.T. García-Quijano, J.A. Mendoza-Roca,
A. Iborra-Clar, L. Pastor-Alcañiz, Effect of alternating anaerobic
and aerobic phases on the performance of a SBR treating
effluents with high salinity and phenols concentration,
Biochem. Eng. J., 113 (2016) 57–65.
- X. Duan, F. Ma, Z. Yuan, L. Chang, X. Jin, Electrochemical
degradation of phenol in aqueous solution using PbO2 anode,
J. Taiwan Inst. Chem. Eng., 44 (2013) 95–102.
- E. Lorenc-Grabowska, G. Gryglewicz, M.A. Diez, Kinetics and
equilibrium study of phenol adsorption on nitrogen-enriched
activated carbons, Fuel, 114 (2013) 235–243.
- I. Anastopoulos, A. Mittal, M. Usman, J. Mittal, G. Yu,
A. Núñez-Delgado, M. Kornaros, A review on halloysite-based
adsorbents to remove pollutants in water and wastewater,
J. Mol. Liq., 269 (2018) 855–868.
- R. Shokoohi, A.J. Jafari, A. Dargahi, Z. Torkshavand, Study
of the efficiency of bio-filter and activated sludge (BF/AS)
combined process in phenol removal from aqueous solution:
determination of removing model according to response surface
methodology (RSM), Desal. Water Treat., 77 (2017) 256–263.
- P.R. Gogate, Treatment of wastewater streams containing
phenolic compounds using hybrid techniques based on
cavitation: a review of the current status and the way forward,
Ultrason. Sonochem., 15 (2008) 1–15.
- R. Shokoohi, R.A. Gillani, M.M. Mahmoudi, A. Dargahi,
Investigation of the efficiency of heterogeneous Fenton-like
process using modified magnetic nanoparticles with sodium
alginate in removing Bisphenol A from aquatic environments:
kinetic studies, Desal. Water Treat., 101 (2018) 185–192.
- A. Almasi, A. Dargahi, M. Mohammadi, A. Azizi, A. Karami,
F. Baniamerian, Z. Saeidimoghadam, Application of response
surface methodology on cefixime removal from aqueous
solution by ultrasonic/photooxidation, Int. J. Pharm. Technol.,
8 (2016) 16728–16736.
- V.K. Gupta, R. Jain, A. Mittal, T.A. Saleh, A. Nayak, S. Agarwal,
S. Sikarwar, Photo-catalytic degradation of toxic dye amaranth
on TiO2/UV in aqueous suspensions, Mater. Sci. Eng., C,
32 (2012) 12–17.
- H. Mehrizadeh, A. Niaei, H.H. Tseng, D. Salari, A. Khataee,
Synthesis of ZnFe2O4 nanoparticles for photocatalytic removal
of toluene from gas phase in the annular reactor, J. Photochem.
Photobiol., A, 332 (2017) 188–195.
- M.E. Borges, M. Sierra, E. Cuevas, R.D. García, P. Esparza,
Photocatalysis with solar energy: sunlight-responsive
photocatalyst based on TiO2 loaded on a natural material for
wastewater treatment, Sol. Energy, 135 (2016) 527–535.
- V.K. Gupta, R. Jain, A. Mittal, M. Mathur, S. Sikarwar,
Photochemical degradation of the hazardous dye Safranin-T
using TiO2 catalyst, J. Colloid Interface Sci., 309 (2007)
464–469.
- R. Jain, M. Mathur, S. Sikarwar, A. Mittal, Removal of the
hazardous dye rhodamine B through photocatalytic and
adsorption treatments, J. Environ. Manage., 85 (2007) 956–964.
- R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Photocatalytic
degradation of aqueous nitrobenzene by nanocrystalline TiO2,
Ind. Eng. Chem. Res., 45 (2006) 922–927.
- M. Chong, B. Jin, C. Chow, C. Saint, Recent developments in
photocatalytic water treatment technology: a review, Water
Res., 44 (2010) 2997–3027.
- S.J. Royaee, M. Sohrabi, N. Fallah, A comprehensive study
on wastewater treatment using photo-impinging streams
reactor: continuous treatment, Korean J. Chem. Eng., 29 (2012)
1577–1584.
- L. Zeng, X. Guo, C. He, C. Duan, Metal-organic frameworks:
versatile materials for heterogeneous photocatalysis, ACS
Catal., 6 (2016) 7935–7947.
- M. Vaez, M. Omidkhah, S. Alijani, A.Z. Moghaddam,
M. Sadrameli, N.G. Zanjani, Evaluation of photocatalytic
activity of immobilized titania nanoparticles by support vector
machine and artificial neural network, Can. J. Chem. Eng.,
93 (2015) 1009–1016.
- M. Bennemla, M. Chabani, A. Amrane, Photocatalytic
degradation of oxytetracycline in aqueous solutions with TiO2
in suspension and prediction by artificial neural networks,
Int. J. Chem. Kinet., 48 (2016) 464–473.
- S. Dutta, S.A. Parsons, C. Bhattacharjee, S. Bandhyopadhyay,
S. Datta, Development of an artificial neural network model for
adsorption and photocatalysis of reactive dye on TiO2 surface,
Expert Syst. Appl., 37 (2010) 8634–8638.
- A. Buthiyappan, A.A. Abdul Raman, M. Davoody,
W.M.A.W. Daud, Parametric study and process evaluation of
Fenton oxidation: application of sequential response surface
methodology and adaptive neuro-fuzzy inference system
computing technique, Chem. Eng. Commun., 204 (2017)
658–676.
- Y. Singh, A.S. Chauhan, Neural networks in data mining,
J. Theor. Appl. Inf. Technol., 5 (2009) 37–42.
- F. Ghanbary, N. Modirshahla, M. Khosravi, M.A. Behnajady,
Synthesis of TiO2 nanoparticles in different thermal conditions
and modeling its photocatalytic activity with artificial neural
network, J. Environ. Sci., 24 (2012) 750–756.
- M.A. Behnajady, H. Eskandarloo, Preparation of TiO2
nanoparticles by the sol–gel method under different pH
conditions and modeling of photocatalytic activity by
artificial neural network, Res. Chem. Intermed., 41 (2015)
2001–2017.
- A.R. Amani-Ghadim, M.S.S. Dorraji, Modeling of
photocatalyatic process on synthesized ZnO nanoparticles:
kinetic model development and artificial neural networks,
Appl. Catal., B, 163 (2015) 539–546.
- L. Breiman, Random forests, Mach. Learn., 45 (2001) 5–32.
- B. Singh, P. Sihag, K. Singh, Modelling of impact of water
quality on infiltration rate of soil by random forest regression,
Model. Earth Syst. Environ., 3 (2017) 999–1004.
- O. Hamidi, L. Tapak, H. Abbasi, Z. Maryanaji, Application
of random forest time series, support vector regression and
multivariate adaptive regression splines models in prediction
of snowfall (a case study of Alvand in the middle Zagros, Iran),
Theor. Appl. Climatol., 134 (2018) 769–776.
- S.A. Naghibi, H.R. Pourghasemi, B. Dixon, GIS-based
groundwater potential mapping using boosted regression tree,
classification and regression tree, and random forest machine
learning models in Iran, Environ. Monit. Assess., 188 (2016)
1–27.
- J.J. Reinosa, P. Leret, C.M. Álvarez-Docio, A. del Campo,
J.F. Fernández, Enhancement of UV absorption behavior
in ZnO–TiO2 composites, Bol. Soc. Español. Cerámi. Vidr.,
55 (2016) 55–62.
- A.M. Khaksar, S. Nazif, A. Taebi, E. Shahghasemi, Treatment
of phenol in petrochemical wastewater considering turbidity
factor by backlight cascade photocatalytic reactor, J. Photochem.
Photobiol., A, 348 (2017) 161–167.
- APHA, WPCF, Standard Methods for the Examination of
Water and Wastewater, Vol. 21, American Public Health
Association/Water Pollution Control Federation, Washington
DC, 2005.
- A.R. Khataee, M.B. Kasiri, Artificial neural networks modeling
of contaminated water treatment processes by homogeneous
and heterogeneous nanocatalysis, J. Mol. Catal. A: Chem.,
331 (2010) 86–100.
- L. Breiman, Out-of-Bag Estimation, 1996. Available at: ftp.stat.
berkeley.edu/pub/users/breiman/OOBestimation.ps
- D.P. Solomatine, Genetic and Other Global Optimization
Algorithms-Comparison and Use in Calibration Problems,
Proceedings of the 3rd International Conference on
Hydroinformatics, Balkema, 1998, pp. 1–2.
- W.L. Price, A controlled random search procedure for global
optimisation, Comput. J., 20 (1977) 367–370.
- S.G. Johnson, The NLopt Nonlinear-Optimization Package.
Available at: http://github.com/stevengj/nlopt
- B. Kang, C. Sklibosios Nikitopoulos, E. Schlogl, B. Taruvinga,
The Impact of Jumps on American Option Pricing: The S&P 100
Options Case, 2019.
- L. Fratila-Apachitei, Influence of membrane morphology on
the flux decline during dead-end ultrafiltration of refinery
and petrochemical waste water, J. Membr. Sci., 182 (2001)
151–159.
- T.H. Khaing, J. Li, Y. Li, N. Wai, F. Wong, Feasibility study
on petrochemical wastewater treatment and reuse using a
novel submerged membrane distillation bioreactor, Sep. Purif.
Technol., 74 (2010) 138–143.
- N.M. Azeez, A.A. Sabbar, Efficiency of duckweed (Lemna minor L.) in phytotreatment of wastewater pollutants from Basrah
oil refinery, J. Appl. Phytotechnol. Environ. Sanit., 1 (2012)
163–172.
- H. Oubrayme, S. Souabi, M. Bouhria, M. Tahiri, S.A. Younssi,
A. Albizane, Performance of wastewater treatment in
petrochemical refinery plant SAMIR, Int. J. Eng. Innovation
Technol., 5 (2015) 74–81.
- S. Shanmugapriya, M. Premalatha, Solar photocatalytic
treatment of phenolic wastewater potential, challenges and
opportunites, J. Eng. Appl. Sci., 3 (2008) 36–41.
- M. Delnavaz, B. Ayati, H. Ganjidoust, S. Sanjabi, Kinetics study
of photocatalytic process for treatment of phenolic wastewater
by TiO2 nano powder immobilized on concrete surfaces,
Toxicol. Environ. Chem., 94 (2012) 1086–1098.
- Z. Khuzwayo, E.M.N. Chirwa, Analysis of catalyst photooxidation
selectivity in the degradation of polyorganochlorinated
pollutants in batch systems using UV and UV/TiO2, South
African, J. Chem. Eng., 23 (2017) 17–25.
- G.G. Lenzi, R.F. Evangelista, E.R. Duarte, L.M.S. Colpini,
A.C. Fornari, R. Menechini Neto, L.M.M. Jorge, O.A.A. Santos,
Photocatalytic degradation of textile reactive dye using artificial
neural network modeling approach, Desal. Water Treat.,
57 (2016) 14132–14144.
- F. Hayati, A.A. Isari, M. Fattahi, B. Anvaripour, S. Jorfi,
Photocatalytic decontamination of phenol and petrochemical
wastewater through ZnO/TiO2 decorated on reduced graphene
oxide nanocomposite: influential operating factors, mechanism,
and electrical energy consumption, RSC Adv., 8 (2018)
40035–40053.
- A. Shokri, Application of sono-photo-Fenton process for
degradation of phenol derivatives in petrochemical wastewater
using full factorial design of experiment, Int. J. Ind. Chem.,
9 (2018) 295–303.
- R. Razmi, B. Ramavandi, M. Ardjmand, A. Heydarinasab,
Efficient phenol removal from petrochemical wastewater using
biochar-La/ultrasonic/persulphate system: characteristics,
reusability, and kinetic study, Environ. Technol., 40 (2019)
822–834.
- A. Dimoglo, H.Y. Akbulut, F. Cihan, M. Karpuzcu, Petrochemical
wastewater treatment by means of clean electrochemical
technologies, Clean Technol. Environ. Policy, 6 (2004) 288–295.
- Z. Liu, W. Xie, D. Li, Y. Peng, Z. Li, S. Liu, Biodegradation of
phenol by bacteria strain Acinetobacter calcoaceticus PA isolated
from phenolic wastewater, Int. J. Environ. Res. Public Health,
13 (2016) 300–308, doi: 10.3390/ijerph13030300.
- J. Sargolzaei, A. Hedayati Moghaddam, A. Nouri, J. Shayegan,
Modeling the removal of phenol dyes using a photocatalytic
reactor with SnO2/Fe3O4 nanoparticles by intelligent system,
J. Dispersion Sci. Technol., 36 (2015) 540–548.
- A.B. Jasso-Salcedo, S. Hoppe, F. Pla, V.A. Escobar-Barrios,
M. Camargo, D. Meimaroglou, Modeling and optimization of
a photocatalytic process: degradation of endocrine disruptor
compounds by Ag/ZnO, Chem. Eng. Res. Des., 128 (2017)
174–191.
- P.S. Patel, V. Gandhi, M.P. Shah, T.S. Natarajan, K. Natarajan,
R.J. Tayade, Modeling and optimization of photocatalytic
degradation process of 4-chlorophenol using response surface
methodology (RSM) and artificial neural network (ANN),
Photocatalytic Nanomater. Environ. Appl., 27 (2018) 405.
- M. Zulfiqar, M.F.R. Samsudin, S. Sufian, Modelling and
optimization of photocatalytic degradation of phenol via TiO2
nanoparticles: an insight into response surface methodology
and artificial neural network, J. Photochem. Photobiol., A, 384
(2019) 1–15, doi: 10.1016/j.jphotochem.2019.112039.
- S. Ray, J.A. Lalman, N. Biswas, Using the Box–Benkhen
technique to statistically model phenol photocatalytic
degradation by titanium dioxide nanoparticles, Chem. Eng.
J., 150 (2009) 15–24.
- I. Udom, P.D. Myers, M.K. Ram, A.F. Hepp, E. Archibong,
E.K. Stefanakos, D.Y. Goswami, Optimization of photocatalytic
degradation of phenol using simple photocatalytic reactor,
Am. J. Anal. Chem., 5 (2014) 743–750.