References

  1. S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian, A. Najafi, E. Mofarrah, Phenol removal from industrial wastewaters: a short review, Desal. Water Treat., 53 (2015) 2215–2234.
  2. Z. Rappoport, The Chemistry of Phenols, Vol. 2, Set John Wiley & Sons, West Sussex, England, 2004.
  3. A. Almasi, M. Mahmoudi, M. Mohammadi, A. Dargahi, H. Biglari, Optimizing biological treatment of petroleum industry wastewater in a facultative stabilization pond for simultaneous removal of carbon and phenol, Toxin Rev., 38 (2019) 1–9, doi: 10.1080/15569543.2019.1573433.
  4. A. Almasi, A. Dargahi, A. Amrane, M. Fazlzadeh, M. Soltanian, A. Hashemian, Effect of molasses addition as biodegradable material on phenol removal under anaerobic conditions, Environ. Eng. Manage. J., 17 (2018) 1475–1482.
  5. A. Dargahi, M. Mohammadi, F. Amirian, A. Karami, A. Almasi, Phenol removal from oil refinery wastewater using anaerobic stabilization pond modeling and process optimization using response surface methodology (RSM), Desal. Water Treat., 87 (2017) 199–208.
  6. R. Shokoohi, H. Movahedian, A. Dargahi, A.J. Jafari, A. Parvaresh, Survey on efficiency of BF/AS integrated biological system in phenol removal of wastewater, Desal. Water Treat., 82 (2017) 315–321.
  7. A.K. Rathoure, Toxicity and Waste Management Using Bioremediation, IGI global, Hershey PA, USA, 2015.
  8. E. Ferrer-Polonio, N.T. García-Quijano, J.A. Mendoza-Roca, A. Iborra-Clar, L. Pastor-Alcañiz, Effect of alternating anaerobic and aerobic phases on the performance of a SBR treating effluents with high salinity and phenols concentration, Biochem. Eng. J., 113 (2016) 57–65.
  9. X. Duan, F. Ma, Z. Yuan, L. Chang, X. Jin, Electrochemical degradation of phenol in aqueous solution using PbO2 anode, J. Taiwan Inst. Chem. Eng., 44 (2013) 95–102.
  10. E. Lorenc-Grabowska, G. Gryglewicz, M.A. Diez, Kinetics and equilibrium study of phenol adsorption on nitrogen-enriched activated carbons, Fuel, 114 (2013) 235–243.
  11. I. Anastopoulos, A. Mittal, M. Usman, J. Mittal, G. Yu, A. Núñez-Delgado, M. Kornaros, A review on halloysite-based adsorbents to remove pollutants in water and wastewater, J. Mol. Liq., 269 (2018) 855–868.
  12. R. Shokoohi, A.J. Jafari, A. Dargahi, Z. Torkshavand, Study of the efficiency of bio-filter and activated sludge (BF/AS) combined process in phenol removal from aqueous solution: determination of removing model according to response surface methodology (RSM), Desal. Water Treat., 77 (2017) 256–263.
  13. P.R. Gogate, Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: a review of the current status and the way forward, Ultrason. Sonochem., 15 (2008) 1–15.
  14. R. Shokoohi, R.A. Gillani, M.M. Mahmoudi, A. Dargahi, Investigation of the efficiency of heterogeneous Fenton-like process using modified magnetic nanoparticles with sodium alginate in removing Bisphenol A from aquatic environments: kinetic studies, Desal. Water Treat., 101 (2018) 185–192.
  15. A. Almasi, A. Dargahi, M. Mohammadi, A. Azizi, A. Karami, F. Baniamerian, Z. Saeidimoghadam, Application of response surface methodology on cefixime removal from aqueous solution by ultrasonic/photooxidation, Int. J. Pharm. Technol., 8 (2016) 16728–16736.
  16. V.K. Gupta, R. Jain, A. Mittal, T.A. Saleh, A. Nayak, S. Agarwal, S. Sikarwar, Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions, Mater. Sci. Eng., C, 32 (2012) 12–17.
  17. H. Mehrizadeh, A. Niaei, H.H. Tseng, D. Salari, A. Khataee, Synthesis of ZnFe2O4 nanoparticles for photocatalytic removal of toluene from gas phase in the annular reactor, J. Photochem. Photobiol., A, 332 (2017) 188–195.
  18. M.E. Borges, M. Sierra, E. Cuevas, R.D. García, P. Esparza, Photocatalysis with solar energy: sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment, Sol. Energy, 135 (2016) 527–535.
  19. V.K. Gupta, R. Jain, A. Mittal, M. Mathur, S. Sikarwar, Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst, J. Colloid Interface Sci., 309 (2007) 464–469.
  20. R. Jain, M. Mathur, S. Sikarwar, A. Mittal, Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments, J. Environ. Manage., 85 (2007) 956–964.
  21. R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Photocatalytic degradation of aqueous nitrobenzene by nanocrystalline TiO2, Ind. Eng. Chem. Res., 45 (2006) 922–927.
  22. M. Chong, B. Jin, C. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  23. S.J. Royaee, M. Sohrabi, N. Fallah, A comprehensive study on wastewater treatment using photo-impinging streams reactor: continuous treatment, Korean J. Chem. Eng., 29 (2012) 1577–1584.
  24. L. Zeng, X. Guo, C. He, C. Duan, Metal-organic frameworks: versatile materials for heterogeneous photocatalysis, ACS Catal., 6 (2016) 7935–7947.
  25. M. Vaez, M. Omidkhah, S. Alijani, A.Z. Moghaddam, M. Sadrameli, N.G. Zanjani, Evaluation of photocatalytic activity of immobilized titania nanoparticles by support vector machine and artificial neural network, Can. J. Chem. Eng., 93 (2015) 1009–1016.
  26. M. Bennemla, M. Chabani, A. Amrane, Photocatalytic degradation of oxytetracycline in aqueous solutions with TiO2 in suspension and prediction by artificial neural networks, Int. J. Chem. Kinet., 48 (2016) 464–473.
  27. S. Dutta, S.A. Parsons, C. Bhattacharjee, S. Bandhyopadhyay, S. Datta, Development of an artificial neural network model for adsorption and photocatalysis of reactive dye on TiO2 surface, Expert Syst. Appl., 37 (2010) 8634–8638.
  28. A. Buthiyappan, A.A. Abdul Raman, M. Davoody, W.M.A.W. Daud, Parametric study and process evaluation of Fenton oxidation: application of sequential response surface methodology and adaptive neuro-fuzzy inference system computing technique, Chem. Eng. Commun., 204 (2017) 658–676.
  29. Y. Singh, A.S. Chauhan, Neural networks in data mining, J. Theor. Appl. Inf. Technol., 5 (2009) 37–42.
  30. F. Ghanbary, N. Modirshahla, M. Khosravi, M.A. Behnajady, Synthesis of TiO2 nanoparticles in different thermal conditions and modeling its photocatalytic activity with artificial neural network, J. Environ. Sci., 24 (2012) 750–756.
  31. M.A. Behnajady, H. Eskandarloo, Preparation of TiO2 nanoparticles by the sol–gel method under different pH conditions and modeling of photocatalytic activity by artificial neural network, Res. Chem. Intermed., 41 (2015) 2001–2017.
  32. A.R. Amani-Ghadim, M.S.S. Dorraji, Modeling of photocatalyatic process on synthesized ZnO nanoparticles: kinetic model development and artificial neural networks, Appl. Catal., B, 163 (2015) 539–546.
  33. L. Breiman, Random forests, Mach. Learn., 45 (2001) 5–32.
  34. B. Singh, P. Sihag, K. Singh, Modelling of impact of water quality on infiltration rate of soil by random forest regression, Model. Earth Syst. Environ., 3 (2017) 999–1004.
  35. O. Hamidi, L. Tapak, H. Abbasi, Z. Maryanaji, Application of random forest time series, support vector regression and multivariate adaptive regression splines models in prediction of snowfall (a case study of Alvand in the middle Zagros, Iran), Theor. Appl. Climatol., 134 (2018) 769–776.
  36. S.A. Naghibi, H.R. Pourghasemi, B. Dixon, GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran, Environ. Monit. Assess., 188 (2016) 1–27.
  37. J.J. Reinosa, P. Leret, C.M. Álvarez-Docio, A. del Campo, J.F. Fernández, Enhancement of UV absorption behavior in ZnO–TiO2 composites, Bol. Soc. Español. Cerámi. Vidr., 55 (2016) 55–62.
  38. A.M. Khaksar, S. Nazif, A. Taebi, E. Shahghasemi, Treatment of phenol in petrochemical wastewater considering turbidity factor by backlight cascade photocatalytic reactor, J. Photochem. Photobiol., A, 348 (2017) 161–167.
  39. APHA, WPCF, Standard Methods for the Examination of Water and Wastewater, Vol. 21, American Public Health Association/Water Pollution Control Federation, Washington DC, 2005.
  40. A.R. Khataee, M.B. Kasiri, Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis, J. Mol. Catal. A: Chem., 331 (2010) 86–100.
  41. L. Breiman, Out-of-Bag Estimation, 1996. Available at: ftp.stat. berkeley.edu/pub/users/breiman/OOBestimation.ps
  42. D.P. Solomatine, Genetic and Other Global Optimization Algorithms-Comparison and Use in Calibration Problems, Proceedings of the 3rd International Conference on Hydroinformatics, Balkema, 1998, pp. 1–2.
  43. W.L. Price, A controlled random search procedure for global optimisation, Comput. J., 20 (1977) 367–370.
  44. S.G. Johnson, The NLopt Nonlinear-Optimization Package. Available at: http://github.com/stevengj/nlopt
  45. B. Kang, C. Sklibosios Nikitopoulos, E. Schlogl, B. Taruvinga, The Impact of Jumps on American Option Pricing: The S&P 100 Options Case, 2019.
  46. L. Fratila-Apachitei, Influence of membrane morphology on the flux decline during dead-end ultrafiltration of refinery and petrochemical waste water, J. Membr. Sci., 182 (2001) 151–159.
  47. T.H. Khaing, J. Li, Y. Li, N. Wai, F. Wong, Feasibility study on petrochemical wastewater treatment and reuse using a novel submerged membrane distillation bioreactor, Sep. Purif. Technol., 74 (2010) 138–143.
  48. N.M. Azeez, A.A. Sabbar, Efficiency of duckweed (Lemna minor L.) in phytotreatment of wastewater pollutants from Basrah oil refinery, J. Appl. Phytotechnol. Environ. Sanit., 1 (2012) 163–172.
  49. H. Oubrayme, S. Souabi, M. Bouhria, M. Tahiri, S.A. Younssi, A. Albizane, Performance of wastewater treatment in petrochemical refinery plant SAMIR, Int. J. Eng. Innovation Technol., 5 (2015) 74–81.
  50. S. Shanmugapriya, M. Premalatha, Solar photocatalytic treatment of phenolic wastewater potential, challenges and opportunites, J. Eng. Appl. Sci., 3 (2008) 36–41.
  51. M. Delnavaz, B. Ayati, H. Ganjidoust, S. Sanjabi, Kinetics study of photocatalytic process for treatment of phenolic wastewater by TiO2 nano powder immobilized on concrete surfaces, Toxicol. Environ. Chem., 94 (2012) 1086–1098.
  52. Z. Khuzwayo, E.M.N. Chirwa, Analysis of catalyst photooxidation selectivity in the degradation of polyorganochlorinated pollutants in batch systems using UV and UV/TiO2, South African, J. Chem. Eng., 23 (2017) 17–25.
  53. G.G. Lenzi, R.F. Evangelista, E.R. Duarte, L.M.S. Colpini, A.C. Fornari, R. Menechini Neto, L.M.M. Jorge, O.A.A. Santos, Photocatalytic degradation of textile reactive dye using artificial neural network modeling approach, Desal. Water Treat., 57 (2016) 14132–14144.
  54. F. Hayati, A.A. Isari, M. Fattahi, B. Anvaripour, S. Jorfi, Photocatalytic decontamination of phenol and petrochemical wastewater through ZnO/TiO2 decorated on reduced graphene oxide nanocomposite: influential operating factors, mechanism, and electrical energy consumption, RSC Adv., 8 (2018) 40035–40053.
  55. A. Shokri, Application of sono-photo-Fenton process for degradation of phenol derivatives in petrochemical wastewater using full factorial design of experiment, Int. J. Ind. Chem., 9 (2018) 295–303.
  56. R. Razmi, B. Ramavandi, M. Ardjmand, A. Heydarinasab, Efficient phenol removal from petrochemical wastewater using biochar-La/ultrasonic/persulphate system: characteristics, reusability, and kinetic study, Environ. Technol., 40 (2019) 822–834.
  57. A. Dimoglo, H.Y. Akbulut, F. Cihan, M. Karpuzcu, Petrochemical wastewater treatment by means of clean electrochemical technologies, Clean Technol. Environ. Policy, 6 (2004) 288–295.
  58. Z. Liu, W. Xie, D. Li, Y. Peng, Z. Li, S. Liu, Biodegradation of phenol by bacteria strain Acinetobacter calcoaceticus PA isolated from phenolic wastewater, Int. J. Environ. Res. Public Health, 13 (2016) 300–308, doi: 10.3390/ijerph13030300.
  59. J. Sargolzaei, A. Hedayati Moghaddam, A. Nouri, J. Shayegan, Modeling the removal of phenol dyes using a photocatalytic reactor with SnO2/Fe3O4 nanoparticles by intelligent system, J. Dispersion Sci. Technol., 36 (2015) 540–548.
  60. A.B. Jasso-Salcedo, S. Hoppe, F. Pla, V.A. Escobar-Barrios, M. Camargo, D. Meimaroglou, Modeling and optimization of a photocatalytic process: degradation of endocrine disruptor compounds by Ag/ZnO, Chem. Eng. Res. Des., 128 (2017) 174–191.
  61. P.S. Patel, V. Gandhi, M.P. Shah, T.S. Natarajan, K. Natarajan, R.J. Tayade, Modeling and optimization of photocatalytic degradation process of 4-chlorophenol using response surface methodology (RSM) and artificial neural network (ANN), Photocatalytic Nanomater. Environ. Appl., 27 (2018) 405.
  62. M. Zulfiqar, M.F.R. Samsudin, S. Sufian, Modelling and optimization of photocatalytic degradation of phenol via TiO2 nanoparticles: an insight into response surface methodology and artificial neural network, J. Photochem. Photobiol., A, 384 (2019) 1–15, doi: 10.1016/j.jphotochem.2019.112039.
  63. S. Ray, J.A. Lalman, N. Biswas, Using the Box–Benkhen technique to statistically model phenol photocatalytic degradation by titanium dioxide nanoparticles, Chem. Eng. J., 150 (2009) 15–24.
  64. I. Udom, P.D. Myers, M.K. Ram, A.F. Hepp, E. Archibong, E.K. Stefanakos, D.Y. Goswami, Optimization of photocatalytic degradation of phenol using simple photocatalytic reactor, Am. J. Anal. Chem., 5 (2014) 743–750.