References
- S. Khan, Q. Cao, Y.M. Zheng, Y.Z. Huang, Y.G. Zhu, Health
risks of heavy metals in contaminated soils and food crops
irrigated with wastewater in Beijing, China, Environ. Pollut.,
152 (2008) 686–692.
- S. Joshi, H. Singh, S. Sharma, P. Barman, A. Saini, G. Verma,
Synthesis and characterization of graphene oxide-bovine
serum albumin conjugate membrane for adsorptive removal of
cobalt(II) from water, Int. J. Environ. Sci. Technol., (2021) 1–14,
doi: 10.1007/s13762-020-03050-y.
- D. Joksimovic, I. Tomic, A.R. Stankovic, M. Jovic, S. Stankovic,
Trace metal concentrations in Mediterranean blue mussel
and surface sediments and evaluation of the mussels quality
and possible risks of high human consumption, Food Chem.,
127 (2011) 632–637.
- H.N. Bhatti, R. Khadim, M.A. Hanif, Biosorption of Pb(II) and
Co(II) on red rose waste biomass, Iran. J. Chem. Chem. Eng.,
30 (2011) 81–87.
- V.K. Gupta, A. Mittal, L. Krishnan, J. Mittal, Adsorption
treatment and recovery of the hazardous dye, Brilliant Blue
FCF, over bottom ash and de-oiled soya, J. Colloid Interface Sci.,
293 (2006) 16–26.
- S. Mahdavi, M. Jalali, A. Afkhami, Heavy metals removal from
aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles,
Chem. Eng. Commun., 200 (2013) 448–470.
- S. Seif, S. Marofi, S. Mahdavi, Removal of Cr3+ ion from aqueous
solutions using MgO and montmorillonite nanoparticles,
Environ. Earth Sci., 78 (2019) 1–10.
- S. Mahdavi, P. Molodi, M. Zarabi, Utilization of bare MgO,
CeO2, and ZnO nanoparticles for nitrate removal from aqueous
solution, Environ. Prog. Sustainable Energy, 37 (2018) 1908–1917.
- S. Mahdavi, Z. Tarhani, A.M. Sayyahzadeh, E.N. Peikam, Effect
of nano-MgO, biochar and humic acid on boron stabilization
in soil in bath and leaching columns, Soil Sediment Contam.:
Int. J., 29 (2020) 595–612.
- S. Mahdavi, M. Zarabi, Functionalized MgO, CeO2 and
ZnO nanoparticles with humic acid for the study of nitrate
adsorption efficiency from water, Res. Chem. Intermed.,
44 (2018) 5043–5062.
- M.S. Gasser, GH.A. Morad, H.F. Aly, Batch kinetics and
thermodynamics of chromium ions removal from waste
solutions using synthetic adsorbents, J. Hazard. Mater.,
142 (2007) 118–129.
- C.T. Campbell, D.E. Starr, Metal adsorption and adhesion
energies on MgO(100), J. Am. Chem. Soc., 124 (2002) 9212–9218.
- T.J. Pinnavaia, Intercalated clay catalysts, Science, 220 (1983)
365–371.
- M.F. Brigatti, E. Galán, B.K.G. Theng, Chapter 2 – Structure
and Mineralogy of Clay Minerals, F. Bergaya, G. Lagaly,
Eds., Developments in Clay Science, Vol. 5A, Elsevier Press,
Amsterdam, 2013, pp. 21–68.
- F. Barraqué, M.L. Montes, M.A. Fernández, R. Candal,
R.M. Torres Sánchez, J.L. Marco-Brown, Arsenate removal
from aqueous solution by montmorillonite and organomontmorillonite
magnetic materials, Environ. Res., 192 (2021)
110247, doi: 10.1016/j.envres.2020.110247.
- S.R. Liu, M. Chen, X.Q. Cao, G. Li, D. Zhang, M.Z. Li, N. Meng,
J.J. Yin, B.Q. Yan, Chromium(VI) removal from water using
cetylpyridinium chloride (CPC)-modified montmorillonite,
Sep. Purif. Technol., 241 (2020) 116732, doi: 10.1016/j.
seppur.2020.116732.
- H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures: For
Polycrystalline and Amorphous Materials, 2nd ed., Wiley,
New York, 1974, p. 618.
- M.M. Abou-Mesalam, Sorption kinetics of copper, zinc,
cadmium and nickel ions on synthesized silico-antimonate ion
exchanger, Colloids Surf., A, 225 (2003) 85–94.
- S. Lagergren, Zur Theorie der sogenannten Adsorption gelöster
Stoffe, Kungliga Svenska Vetenskapsakademiens, Handler,
24 (1898) 1–39.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- K.-Y. Shin, J.-Y. Hong, J.S. Jang, Heavy metal ion adsorption
behavior in nitrogen-doped magnetic carbon nanoparticles:
isotherms and kinetic study, J. Hazard. Mater., 190 (2011)
36–44.
- K.H. Tan, Principles of Soil Chemistry, CRC Press Inc., Boca
Raton, FL, USA, 2010.
- G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Activated carbons
produced by pyrolysis of waste potato peels: cobalt ions
removal by adsorption, Colloids Surf., A, 490 (2016) 74–83.
- A.K. Helmy, E.A. Ferreiro, S.G. De Bussetti, Cation exchange
capacity and condition of zero charge of hydroxy-A1
montmorillonite, Clays Clay Miner., 42 (1994) 444–450.
- C. Bulin, Y.H. Zhang, B. Li, B.W. Zhang, Removal performance
of aqueous Co(II) by magnetic graphene oxide and adsorption
mechanism, J. Phys. Chem. Solids, 144 (2020) 109483, doi:
10.1016/j.jpcs.2020.109483.
- D. Gogoi, T. Kumar, A.G. Shanmugamani, S.V.S. Rao, P.K. Sinha,
Studies on removal of cobalt from an alkaline waste using
synthetic calcium hydroxyapatite, J. Radioanal. Nucl. Chem.,
298 (2013) 337–344.
- K.G. Bhattacharyya, S.S. Gupta, Adsorption of a few heavy
metals on natural and modified kaolinite and montmorillonite:
a review, Adv. Colloid Interface Sci., 140 (2008) 114–131.
- R. Dabbagh, Z. Ashtiani Moghaddam, H. Ghafourian, Removal
of cobalt(II) ion from water by adsorption using intact and
modified Ficus carica leaves as low-cost natural sorbent, Desal.
Water Treat., 57 (2015) 19890–19902.
- S. Vilvanathan, S. Shanthakumar, Removal of Ni(II) and Co(II)
ions from aqueous solution using teak (Tectona grandis) leaves
powder: adsorption kinetics, equilibrium and thermodynamics
study, Desal. Water Treat., 57 (2014) 3995–4007.
- M. Deravanesiyan, M. Beheshti, A. Malekpour, Alumina
nanoparticles immobilization onto the NaX zeolite and the
removal of Cr(III) and Co(II) ions from aqueous solutions,
J. Ind. Eng. Chem., 21 (2015) 580–586.
- Ş. Kubilay, R. Gürkan, A. Savran, T. Şahan, Removal of Cu(II),
Zn(II) and Co(II) ions from aqueous solutions by adsorption
onto natural bentonite, Adsorption, 13 (2007) 41–51.
- Y. Aşçı, Ş. Kaya, Removal of cobalt ions from water by ionexchange
method, Desal. Water Treat., 52 (2014) 267–273.
- S. Xu, Z. Zhong, W.Z. Liu, H. Deng, Z. Lin, Removal of
Sb(III) from wastewater by magnesium oxide and the related
mechanisms, Environ. Res., 186 (2020) 109489, doi: 10.1016/j.
envres.2020.109489.
- M. Tokarčíková, J. Seidlerová, O. Motyka, O. Životský,
K. Drobíková, R. Gabor, Experimental verification of
regenerable magnetically modified montmorillonite and its
application for heavy metals removal from metallurgical waste
leachates, J. Water Process Eng., 39 (2021) 101691, doi: 10.1016/j.
jwpe.2020.101691
- P.N. Dave, N. Subrahmanyam, S. Sharma, Kinetics and
thermodynamics of copper ions removal from aqueous
solutions by use of activated charcoal, Indian J. Chem. Technol.,
16 (2009) 234–239.
- L. Seid, D. Chouder, N. Maouche, I. Bakas, N. Barka, Removal
of Cd(II) and Co(II) ions from aqueous solutions by polypyrrole
particles: kinetics, equilibrium and thermodynamics, J. Taiwan
Inst. Chem. Eng., 45 (2014) 2969–2974.
- F. Güzel, H. Yakut, G. Topal, Determination of kinetic and
equilibrium parameters of the batch adsorption of Mn(II), Co(II),
Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus
carota L.) residues, J. Hazard. Mater., 153 (2008) 1275–1287.
- R. Foroutan, H. Esmaeili, M. Abbasi, M, Rezakazemi,
M. Mesbah, Adsorption behavior of Cu(II) and Co(II) using
chemically modified marine algae, Environ. Technol., 39 (2017)
2792–2800.