References

  1. S. Khan, Q. Cao, Y.M. Zheng, Y.Z. Huang, Y.G. Zhu, Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China, Environ. Pollut., 152 (2008) 686–692.
  2. S. Joshi, H. Singh, S. Sharma, P. Barman, A. Saini, G. Verma, Synthesis and characterization of graphene oxide-bovine serum albumin conjugate membrane for adsorptive removal of cobalt(II) from water, Int. J. Environ. Sci. Technol., (2021) 1–14, doi: 10.1007/s13762-020-03050-y.
  3. D. Joksimovic, I. Tomic, A.R. Stankovic, M. Jovic, S. Stankovic, Trace metal concentrations in Mediterranean blue mussel and surface sediments and evaluation of the mussels quality and possible risks of high human consumption, Food Chem., 127 (2011) 632–637.
  4. H.N. Bhatti, R. Khadim, M.A. Hanif, Biosorption of Pb(II) and Co(II) on red rose waste biomass, Iran. J. Chem. Chem. Eng., 30 (2011) 81–87.
  5. V.K. Gupta, A. Mittal, L. Krishnan, J. Mittal, Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya, J. Colloid Interface Sci., 293 (2006) 16–26.
  6. S. Mahdavi, M. Jalali, A. Afkhami, Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles, Chem. Eng. Commun., 200 (2013) 448–470.
  7. S. Seif, S. Marofi, S. Mahdavi, Removal of Cr3+ ion from aqueous solutions using MgO and montmorillonite nanoparticles, Environ. Earth Sci., 78 (2019) 1–10.
  8. S. Mahdavi, P. Molodi, M. Zarabi, Utilization of bare MgO, CeO2, and ZnO nanoparticles for nitrate removal from aqueous solution, Environ. Prog. Sustainable Energy, 37 (2018) 1908–1917.
  9. S. Mahdavi, Z. Tarhani, A.M. Sayyahzadeh, E.N. Peikam, Effect of nano-MgO, biochar and humic acid on boron stabilization in soil in bath and leaching columns, Soil Sediment Contam.: Int. J., 29 (2020) 595–612.
  10. S. Mahdavi, M. Zarabi, Functionalized MgO, CeO2 and ZnO nanoparticles with humic acid for the study of nitrate adsorption efficiency from water, Res. Chem. Intermed., 44 (2018) 5043–5062.
  11. M.S. Gasser, GH.A. Morad, H.F. Aly, Batch kinetics and thermodynamics of chromium ions removal from waste solutions using synthetic adsorbents, J. Hazard. Mater., 142 (2007) 118–129.
  12. C.T. Campbell, D.E. Starr, Metal adsorption and adhesion energies on MgO(100), J. Am. Chem. Soc., 124 (2002) 9212–9218.
  13. T.J. Pinnavaia, Intercalated clay catalysts, Science, 220 (1983) 365–371.
  14. M.F. Brigatti, E. Galán, B.K.G. Theng, Chapter 2 – Structure and Mineralogy of Clay Minerals, F. Bergaya, G. Lagaly, Eds., Developments in Clay Science, Vol. 5A, Elsevier Press, Amsterdam, 2013, pp. 21–68.
  15. F. Barraqué, M.L. Montes, M.A. Fernández, R. Candal, R.M. Torres Sánchez, J.L. Marco-Brown, Arsenate removal from aqueous solution by montmorillonite and organomontmorillonite magnetic materials, Environ. Res., 192 (2021) 110247, doi: 10.1016/j.envres.2020.110247.
  16. S.R. Liu, M. Chen, X.Q. Cao, G. Li, D. Zhang, M.Z. Li, N. Meng, J.J. Yin, B.Q. Yan, Chromium(VI) removal from water using cetylpyridinium chloride (CPC)-modified montmorillonite, Sep. Purif. Technol., 241 (2020) 116732, doi: 10.1016/j. seppur.2020.116732.
  17. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed., Wiley, New York, 1974, p. 618.
  18. M.M. Abou-Mesalam, Sorption kinetics of copper, zinc, cadmium and nickel ions on synthesized silico-antimonate ion exchanger, Colloids Surf., A, 225 (2003) 85–94.
  19. S. Lagergren, Zur Theorie der sogenannten Adsorption gelöster Stoffe, Kungliga Svenska Vetenskapsakademiens, Handler, 24 (1898) 1–39.
  20. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  21. K.-Y. Shin, J.-Y. Hong, J.S. Jang, Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: isotherms and kinetic study, J. Hazard. Mater., 190 (2011) 36–44.
  22. K.H. Tan, Principles of Soil Chemistry, CRC Press Inc., Boca Raton, FL, USA, 2010.
  23. G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Activated carbons produced by pyrolysis of waste potato peels: cobalt ions removal by adsorption, Colloids Surf., A, 490 (2016) 74–83.
  24. A.K. Helmy, E.A. Ferreiro, S.G. De Bussetti, Cation exchange capacity and condition of zero charge of hydroxy-A1 montmorillonite, Clays Clay Miner., 42 (1994) 444–450.
  25. C. Bulin, Y.H. Zhang, B. Li, B.W. Zhang, Removal performance of aqueous Co(II) by magnetic graphene oxide and adsorption mechanism, J. Phys. Chem. Solids, 144 (2020) 109483, doi: 10.1016/j.jpcs.2020.109483.
  26. D. Gogoi, T. Kumar, A.G. Shanmugamani, S.V.S. Rao, P.K. Sinha, Studies on removal of cobalt from an alkaline waste using synthetic calcium hydroxyapatite, J. Radioanal. Nucl. Chem., 298 (2013) 337–344.
  27. K.G. Bhattacharyya, S.S. Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review, Adv. Colloid Interface Sci., 140 (2008) 114–131.
  28. R. Dabbagh, Z. Ashtiani Moghaddam, H. Ghafourian, Removal of cobalt(II) ion from water by adsorption using intact and modified Ficus carica leaves as low-cost natural sorbent, Desal. Water Treat., 57 (2015) 19890–19902.
  29. S. Vilvanathan, S. Shanthakumar, Removal of Ni(II) and Co(II) ions from aqueous solution using teak (Tectona grandis) leaves powder: adsorption kinetics, equilibrium and thermodynamics study, Desal. Water Treat., 57 (2014) 3995–4007.
  30. M. Deravanesiyan, M. Beheshti, A. Malekpour, Alumina nanoparticles immobilization onto the NaX zeolite and the removal of Cr(III) and Co(II) ions from aqueous solutions, J. Ind. Eng. Chem., 21 (2015) 580–586.
  31. Ş. Kubilay, R. Gürkan, A. Savran, T. Şahan, Removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions by adsorption onto natural bentonite, Adsorption, 13 (2007) 41–51.
  32. Y. Aşçı, Ş. Kaya, Removal of cobalt ions from water by ionexchange method, Desal. Water Treat., 52 (2014) 267–273.
  33. S. Xu, Z. Zhong, W.Z. Liu, H. Deng, Z. Lin, Removal of Sb(III) from wastewater by magnesium oxide and the related mechanisms, Environ. Res., 186 (2020) 109489, doi: 10.1016/j. envres.2020.109489.
  34. M. Tokarčíková, J. Seidlerová, O. Motyka, O. Životský, K. Drobíková, R. Gabor, Experimental verification of regenerable magnetically modified montmorillonite and its application for heavy metals removal from metallurgical waste leachates, J. Water Process Eng., 39 (2021) 101691, doi: 10.1016/j. jwpe.2020.101691
  35. P.N. Dave, N. Subrahmanyam, S. Sharma, Kinetics and thermodynamics of copper ions removal from aqueous solutions by use of activated charcoal, Indian J. Chem. Technol., 16 (2009) 234–239.
  36. L. Seid, D. Chouder, N. Maouche, I. Bakas, N. Barka, Removal of Cd(II) and Co(II) ions from aqueous solutions by polypyrrole particles: kinetics, equilibrium and thermodynamics, J. Taiwan Inst. Chem. Eng., 45 (2014) 2969–2974.
  37. F. Güzel, H. Yakut, G. Topal, Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues, J. Hazard. Mater., 153 (2008) 1275–1287.
  38. R. Foroutan, H. Esmaeili, M. Abbasi, M, Rezakazemi, M. Mesbah, Adsorption behavior of Cu(II) and Co(II) using chemically modified marine algae, Environ. Technol., 39 (2017) 2792–2800.