References
- K.K. Sadasivuni, S. Rattan, S. Waseem, S.K. Bramhe,
S.B. Kondawar, S. Ghosh, P. Mazumdar, Silver Nanoparticles
and Its Polymer Nanocomposites-Synthesis, Optimization,
Biomedical Usage, and Its Various Applications, K. Sadasivuni,
D. Ponnamma, M. Rajan, B. Ahmed, M. Al-Maadeed, Eds.,
Polymer Nanocomposites in Biomedical Engineering, Lecture
Notes in Bioengineering, Springer, Cham, 2019, pp. 331–373.
- B. Tylkowski, A. Trojanowska, M. Nowak, L. Marciniak,
R. Jastrzab, Applications of silver nanoparticles stabilized and/
or immobilized by polymer matrixes, Phys. Sci. Rev., 2 (2017)
1–16, doi: 10.1515/psr-2017-0024.
- T. Dayakar, K.V. Rao, J. Park, K.K. Sadasivuni, K.R. Rao, Nonenzymatic
biosensing of glucose based on silver nanoparticles
synthesized from Ocimum tenuiflorum leaf extract and silver
nitrate, Mater. Chem. Phys., 216 (2018) 502–507.
- T. Kamal, I. Ahmad, S.B. Khan, A.M. Asiri, Bacterial cellulose as
support for biopolymer stabilized catalytic cobalt nanoparticles,
Int. J. Biol. Macromol., 135 (2019) 1162–1170.
- S.Y. Park, J.W. Chung, Y.K. Chae, S.Y. Kwak, Amphiphilic
thiol functional linker mediated sustainable anti-biofouling
ultrafiltration nanocomposite comprising a silver nanoparticles
and poly(vinylidene fluoride) membrane, ACS Appl. Mater.
Interfaces, 5 (2013) 10705–10714.
- S.Y. Park, J.W. Chung, R.D. Priestley, S.Y. Kwak, Covalent
assembly of metal nanoparticles on cellulose fabric and its
antimicrobial activity, Cellulose, 19 (2012) 2141–2151.
- A. Popelka, P. Sobolciak, M. Mrlík, Z. Nogellova, I. Chodák,
M. Ouederni, M.A. Al-Maadeed, I. Krupa, Foamy phase change
materials based on linear low-density polyethylene and paraffin
wax blends, Emerg. Mater., 1 (2018) 1–8.
- F.S. Kodeh, I.M. El-Nahhal, E. Abou Elkhair, A.H. Darwish,
Synthesis of CaO-Ag-NPs@CaCO3 nanocomposite via
impregnation of aqueous sol Ag-NPs onto calcined calcium
oxalate, Chem. Afr., 14 (2019) 1–8.
- D.T. Santos, B.F. Sarrouh, J.D. Rivaldi, A. Converti, S.S. Silva,
Use of sugarcane bagasse as biomaterial for cell immobilization
for xylitol production, J. Food Eng., 86 (2008) 542–548.
- Y. Wu, Y. Zhang, J. Zhou, D. Gu, Recent progress on functional
mesoporous materials as catalysts in organic synthesis, Emerg.
Mater., 3 (2020) 1–20.
- D.P. Wagh, G.D. Yadav, Selectivity engineering in catalysis
by ruthenium nanoparticles supported on heteropolyacidencapsulated
MOF-5: one-pot synthesis of allyl 4-cyclohexane
butyrate and kinetic modeling, Emerg. Mater., 3 (2020)
965–988.
- T. Mozammel, D. Dumbre, P.R. Selvakannan, K.K. Sadasivuni,
S.K. Bhargava, Calcined hydrotalcites of varying Mg/Al ratios
supported Rh catalysts: highly active mesoporous and stable
catalysts toward catalytic partial oxidation of methane, Emerg.
Mater., 4 (2021) 469–481.
- D.P. Stankus, S.E. Lohse, J.E. Hutchison, J.A. Nason, Interactions
between natural organic matter and gold nanoparticles
stabilized with different organic capping agents, Environ. Sci.
Technol., 45 (2011) 3238–3244.
- S. Bibi, G.J. Price, T. Yasin, M. Nawaz, Eco-friendly synthesis,
and catalytic application of chitosan/gold/carbon nanotube
nanocomposite films, RSC Adv., 6 (2016) 60180–60186.
- E. Guibal, Heterogeneous catalysis on chitosan-based materials:
a review, Prog. Polym. Sci., 30 (2005) 71–109.
- H. Huang, X. Yang, Synthesis of chitosan-stabilized gold
nanoparticles in the absence/presence of tripolyphosphate,
Biomacromolecules, 5 (2004) 2340–2346.
- K. Norajit, K.M. Kim, G.H. Ryu, Comparative studies on the
characterization and antioxidant properties of biodegradable
alginate films containing ginseng extract, J. Food Eng., 98 (2010)
377–384.
- A. Bibi, S. Rehman, A. Yasin, Alginate-nanoparticles composites:
kinds, reactions and applications, Mater. Res. Express, 6 (2019)
1–15, doi: 10.1088/2053-1591/ab2016.
- M.A. Kamal, S. Bibi, S.W. Bokhari, A.H. Siddique, T. Yasin,
Synthesis and adsorptive characteristics of novel chitosan/
graphene oxide nanocomposite for dye uptake, React. Funct.
Polym., 110 (2017) 21–29.
- A.M.F. Lima, M.D.F. Lima, O.B.G. Assis, A. Raabe,
H.C.D. Amoroso, V.A. Oliveira Tiera, M.J. Tiera, Synthesis
and physicochemical characterization of multiwalled carbon
nanotubes/hydroxamic alginate nanocomposite scaffolds,
J. Nanomater., 2018 (2018) 1–12.
- B. Joddar, E. Garcia, A. Casas, C.M. Stewart, Development of
functionalized multi-walled carbon-nanotube-based alginate
hydrogels for enabling biomimetic technologies, Sci. Rep.,
6 (2016) 1–12.
- M. Arjmand, K. Chizari, B. Krause, P. Pötschke, U. Sundararaj,
Effect of synthesis catalyst on structure of nitrogen-doped carbon
nanotubes and electrical conductivity and electromagnetic
interference shielding of their polymeric nanocomposites,
Carbon, 98 (2016) 358–372.
- B. Galindo, A. Benedito, E. Gimenez, V. Compañ, Comparative
study between the microwave heating efficiency of carbon
nanotubes versus multilayer graphene in polypropylene
nanocomposites, Composites, Part B, 98 (2016) 330–338.
- X. Wu, C. Lu, Y. Han, Z. Zhou, G. Yuan, X. Zhang, Cellulose
nanowhisker modulated 3D hierarchical conductive structure
of carbon black/natural rubber nanocomposites for liquid and
strain sensing application, Compos. Sci. Technol., 124 (2016)
44–51.
- M. Ionita, M.A. Pandele, H. Iovu, Sodium alginate/graphene
oxide composite films with enhanced thermal and mechanical
properties, Carbohydr. Polym., 94 (2013) 339–344.
- U.T. Khatoon, K.V. Rao, J.R. Rao, Y. Aparna, Synthesis
and Characterization of Silver Nanoparticles by Chemical
Reduction Method, International Conference on Nanoscience,
Engineering and Technology (CONSET 2011), Chennai, 2011,
pp. 97–99.
- C.H. Lee, Y.C. Bae, Effect of surfactants on the swelling behaviors
of thermosensitive hydrogels: applicability of the generalized
Langmuir isotherm, RSC Adv., 6 (2016) 103811–103821.
- A. Gangula, R. Podila, L. Karanam, C. Janardhana, A.M. Rao,
Catalytic reduction of 4-nitrophenol using biogenic gold and
silver nanoparticles derived from Breynia rhamnoides, Langmuir,
27 (2011) 15268–15274.
- V.K. Vidhu, D. Philip, Catalytic degradation of organic dyes
using biosynthesized silver nanoparticles, Micron, 56 (2014)
54–62.
- G. Mie, Contributions to the optics of turbid media, particularly
of colloidal metal solutions, Ann. Phys., 25 (1976) 377–445.
- Y.G. Sun, Y.N. Xia, Plasmonics: metallic nanostructures and
their optical properties, Proc. SPIE Int. Soc. Opt. Eng., 5221
(2003) 170–173.
- B.M. Gatehouse, S.E. Livingstone, R.S. Nyholm, The infrared
spectra of some simple and complex carbonates, J. Chem. Soc.,
636 (1958) 3137–3142, doi: 10.1039/JR9580003137.
- T.L. Slager, B.J. Lindgren, A.J. Mallmann, R.G. Greenler, Infrared
spectra of the oxides and carbonates of silver, J. Phys. Chem.,
76 (1972) 940–943.
- G. Pasparakis, N. Bouropoulos, Swelling studies and in vitro
release of verapamil from calcium alginate and calcium
alginate-chitosan beads, Int. J. Pharm., 323 (2006) 34–42.
- G.T. Grant, Biological interactions between polysaccharides
and divalent cations: the egg-box model, FEBS Lett., 32 (1973)
195–198.
- F.U. Khan, S.B. Khan, T. Kamal, A.M. Asiri, I.U. Khan, K. Akhtar,
Novel combination of zero-valent Cu and Ag nanoparticles@
cellulose acetate nanocomposite for the reduction of 4-nitro
phenol, Int. J. Biol. Macromol., 102 (2017) 868–877.
- F. Ali, S.B. Khan, T. Kamal, Y. Anwar, K.A. Alamry, A.M. Asiri,
Anti-bacterial chitosan/zinc phthalocyanine fibers supported
metallic and bimetallic nanoparticles for the removal of organic
pollutants, Carbohydr. Polym., 173 (2017) 676–689.
- N. Ali, T. Kamal, M. Ul-Islam, A. Khan, S.J. Shah, A. Zada,
Chitosan-coated cotton cloth supported copper nanoparticles
for toxic dye reduction, Int. J. Biol. Macromol., 111 (2018)
832–838.
- J. Hedberg, M. Lundin, T. Lowe, E. Blomberg, S. Wold,
I.O. Wallinder, Interactions between surfactants and silver
nanoparticles of varying charge, J. Colloid Interface Sci.,
369 (2012) 193–201.
- A. Khalil, N. Ali, A. Khan, A.M. Asiri, T. Kamal, Catalytic
potential of cobalt oxide and agar nanocomposite hydrogel
for the chemical reduction of organic pollutants, Int. J. Biol.
Macromol., 164 (2020) 2922–2930.
- M.S.J. Khan, T. Kamal, F. Ali, A.M. Asiri, S.B. Khan, Chitosancoated
polyurethane sponge supported metal nanoparticles for
catalytic reduction of organic pollutants, Int. J. Biol. Macromol.,
132 (2019) 772–783.
- K. Esumi, R. Isono, T. Yoshimura, Preparation of PAMAM and
PPI metal (silver, platinum, and palladium) nanocomposites
and their catalytic activities for reduction of 4-nitrophenol,
Langmuir, 20 (2004) 237–243.
- R. Rajesh, E. Sujanthi, S.S. Kumar, R. Venkatesan, Designing
versatile heterogeneous catalysts based on Ag and Au
nanoparticles decorated on chitosan functionalized graphene
oxide, Phys. Chem. Chem. Phys., 17 (2015) 11329–11340.
- L. Ai, J. Jing, Catalytic reduction of 4-nitrophenol by
silver nanoparticles stabilized on environmentally benign
macroscopic biopolymer hydrogel, Bioresour. Technol.,
132 (2013) 374–377.
- K. Kalantari, A.B.M. Afifi, S. Bayat, K. Shameli, S. Yousefi,
N. Mokhtar, A. Kalantari, Heterogeneous catalysis in
4-nitrophenol degradation and antioxidant activities of silver
nanoparticles embedded in Tapioca starch, Arabian J. Chem.,
12 (2017) 5246–5252.
- G. Xiao, Y. Zhao, L. Li, J. O. Pratt, H. Su, T. Tan, Facile synthesis
of dispersed Ag nanoparticles on chitosan-TiO2 composites
as recyclable nanocatalysts for 4-nitrophenol reduction,
Nanotechnology, 29 (2018) 1–9.
- A. Verma, D.P. Jaihindh, Y.P. Fu, Photocatalytic 4-nitrophenol
degradation and oxygen evolution reaction in CuO/g-C3N4
composites prepared by deep eutectic solvent-assisted chlorine
doping, Dalton Trans., 48 (2019) 8594–8610.
- S. Sandip, P. Anjali, K. Subrata, B. Soumen, T. Pal, Photochemical
green synthesis of calcium-alginate-stabilized Ag and Au
nanoparticles and their catalytic application to 4-nitrophenol
reduction, Langmuir, 26 (2010) 2885–2893.
- A. Vanaamudan, M. Sadhu, P. Pamidimukkala, Chitosan-Guar
gum blend silver nanoparticle bio nanocomposite with potential
for catalytic degradation of dyes and catalytic reduction of
nitrophenol, J. Mol. Liq., 271 (2018) 202–208.
- K. Sravanthi, D. Ayodhya, P.Y. Swamy, Green synthesis,
characterization and catalytic activity of 4-nitrophenol
reduction and formation of benzimidazoles using bentonite
supported zero valent iron nanoparticles, Mater. Sci. Technol., 2
(2019) 298–307.