References

  1. G.Th. Vlachos, J.K. Kaldellis, Application of gas-turbine exhaust gases for brackish water desalination: a techno-economic evaluation, Appl. Therm. Eng., 24 (2004) 2487–2500.
  2. K.K.J.K. Kaldellis, J. Garofallakis, K. Kavadias, Renewable Energy Solution for Clean Water Production in the Aegean Archipelago Islands, Mediterranean Conference on Policies and Strategies for Desalination and Renewable Energies, Santorini Island, Greece, 2000.
  3. R. Dashtpour, S.N. Al-Zubaidy, Energy efficient reverse osmosis desalination process, Int. J. Environ. Sci. Dev., 3 (2012) 339–345.
  4. C. Charcosset, A review of membrane processes and renewable energies for desalination, Desalination, 245 (2009) 214–231.
  5. M.M. Salah, A.G. Abo-khalil, R. Praveen, Wind speed characteristics and energy potential for selected sites in Saudi Arabia, J. King Saud Univ.-Eng. Sci., 33 (2019) 119–128.
  6. E. Ali, A. Ajbar, M. Boumaza, Performance assessment of a wind driven membrane desalination unit in Saudi Arabia, J. Eng. Res., 5 (2017) 43–67.
  7. W.Y. Lai, Q.F. Ma, H. Lu, S.J. Weng, J.Q. Fan, H.X. Fang, Effects of wind intermittence and fluctuation on reverse osmosis desalination process and solution strategies, Desalination, 395 (2016) 17–27.
  8. J. Marriott, E. Sørensen, A general approach to modelling membrane modules, Chem. Eng. Sci., 58 (2003) 4975–4990.
  9. F. Vince, F. Marechal, E. Aoustin, P. Bréant, Multi-objective optimization of RO desalination plants, Desalination, 222 (2008) 96–118.
  10. J.A. Carta, J. González, P. Cabrera, V.J. Subiela, Preliminary experimental analysis of a small-scale prototype SWRO desalination plant, designed for continuous adjustment of its energy consumption to the widely varying power generated by a stand-alone wind turbine, Appl. Energy, 137 (2015) 222–239.
  11. Z. Triki, M.N. Bouaziz, M. Boumaza, Techno-economic feasibility of wind-powered reverse osmosis brackish water desalination systems in southern Algeria, Desal. Water Treat., 52 (2014) 1745–1760.
  12. M.A.M. Khan, S. Rehman, F.A. Al-Sulaiman, A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: a review, Renewable Sustainable Energy Rev., 97 (2018) 456–477.
  13. M.S. Miranda, D. Infield, A wind-powered seawater reverseosmosis system without batteries, Desalination, 153 (2003) 9–16.
  14. I. de la Nuez Pestana, F.J.G. Latorre, C.A. Espinoza, A.G. Gotor, Optimization of RO desalination systems powered by renewable energies. Part I: wind energy, Desalination, 160 (2004) 293–299.
  15. B.S. Richards, G.L. Park, T. Pietzsch, A.I. Schäfer, Renewable energy powered membrane technology: brackish water desalination system operated using real wind fluctuations and energy buffering, J. Membr. Sci., 468 (2014) 224–232.
  16. O. Charrouf, A. Betka, S. Abdeddaim, A. Ghamri, Artificial Neural Network power manager for hybrid PV-wind desalination system, Math. Comput. Simul., 167 (2020) 443–460.
  17. W.X. Peng, A. Maleki, M.A. Rosen, P. Azarikhah, Optimization of a hybrid system for solar-wind-based water desalination by reverse osmosis: comparison of approaches, Desalination, 442 (2018) 16–31.
  18. E.Sh. Mohamed, G. Papadakis, Design, simulation and economic analysis of a stand-alone reverse osmosis desalination unit powered by wind turbines and photovoltaics, Desalination, 164 (2004) 87–97.
  19. W. Khiari, M. Turki, J. Belhadj, Power control strategy for PV/ Wind reverse osmosis desalination without battery, Control Eng. Pract., 89 (2019) 169–179.
  20. G.L. Park, A.I. Schäfer, B.S. Richards, Renewable energy powered membrane technology: the effect of wind speed fluctuations on the performance of a wind-powered membrane system for brackish water desalination, J. Membr. Sci., 370 (2011) 34–44.
  21. P. Cabrera, J.A. Carta, J. González, G. Melián, Wind-driven SWRO desalination prototype with and without batteries: a performance simulation using machine learning models, Desalination, 435 (2018) 77–96.
  22. N. Al-Bastaki, A. Abbas, Permeate recycle to improve the performance of a spiral-wound RO plant, Desalination, 158 (2003) 119–126.
  23. A.A. Al-Naeem, Monitoring of groundwater salinity for water resources management in irrigated areas of Al-Jouf region, Saudi Arabia, Res. J. Environ. Sci., 9 (2015) 256–269.
  24. A. Maleki, F. Pourfayaz, M.A. Rosen, A novel framework for optimal design of hybrid renewable energy-based autonomous energy systems: a case study for Namin, Iran, Energy, 98 (2016) 168–180.
  25. J.S. Kim, J. Chen, H.E. Garcia, Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems, Energy, 112 (2016) 52–66.
  26. G. Srivathsan, Modeling of Fluid Flow in Spiral Wound Reverse Osmosis Membranes, Thesis or Dissertation, Retrieved from the University of Minnesota Digital Conservancy, 2013. Available at: https://hdl.handle.net/11299/158160.
  27. https://membranes.com/docs/trc/Dsgn_Lmt.pdf
  28. https://www.stats.gov.sa/ar/3123
  29. A.S. Stillwell, M.E. Webber, Predicting the specific energy consumption of reverse osmosis desalination, Water, 8 (2016) 601, doi: 10.3390/w8120601.
  30. A.J. Karabelas, C.P. Koutsou, M. Kostoglou, D.C. Sioutopoulos, Analysis of specific energy consumption in reverse osmosis desalination processes, Desalination, 431 (2018) 15–21.
  31. M.A.M. Ramli, S. Twaha, Z. Al-Hamouz, Analyzing the potential and progress of distributed generation applications in Saudi Arabia: the case of solar and wind resources, Renewable Sustainable Energy Rev., 70 (2017) 287–297.
  32. A.M. Eltamaly, A.A. Al-Shamma’a, Optimal configuration for isolated hybrid renewable energy systems, J. Renewable Sustainable Energy, 8 (2016) 045502, doi: 10.1063/1.4960407.
  33. A.M. Eltamaly, Pairing between sites and wind turbines for Saudi Arabia Sites, Arabian J. Sci. Eng., 39 (2014) 6225–6233.
  34. M.J.M. Stevens, P.T. Smulders, The estimation of the parameters of the Weibull wind speed distribution for wind energy utilization purposes, Wind Eng., 3 (1979) 132–145.
  35. U. Bawah, K.E. Addoweesh, A.M. Eltamaly, Economic modeling of site-specific optimum wind turbine for electrification studies, Adv. Mater. Res., 347–353 (2011) 1973–1986.
  36. M.G. Marcovecchio, P.A. Aguirre, N.J. Scenna, Global optimal design of reverse osmosis networks for seawater desalination: modeling and algorithm, Desalination, 184 (2005) 259–271.
  37. M.S. Atab, A.J. Smallbone, A.P. Roskilly, An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation, Desalination, 397 (2016) 174–184.
  38. A.H. Al-Jabr, R. Ben-Mansour, Optimum Selection of Renewable Energy Powered Desalination Systems, Multidisciplinary Digital Publishing Institute Proceedings, 2018, pp. 612, doi: 10.3390/proceedings2110612.
  39. H. Fath, A. Sadik, T. Mezher, Present and future trend in the production and energy consumption of desalinated water in GCC countries, Int. J. Therm. Environ. Eng., 5 (2013) 155–165.
  40. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges, Water Res., 43 (2009) 2317–2348.
  41. https://en.wind-turbine-models.com/turbines/812-ades-ades-60
  42. https://en.wind-turbine-models.com/turbines/1682- hummer-h25.0-100kw
  43. http://www.neicjapan.com/smallwindmill/Aeolos-H%20 100kW%20Brochure.pdf
  44. https://www.norvento.com/en/for-large-companies/
  45. https://en.wind-turbine-models.com/turbines/859-aircon-10s
  46. https://en.wind-turbine-models.com/turbines/1829- aeolia-windtech-d2cf-200
  47. https://en.wind-turbine-models.com/turbines/956-air-19-100
  48. https://en.wind-turbine-models.com/turbines/144-allgaierstgw- 34
  49. https://en.wind-turbine-models.com/turbines/1026-aeitalia- stoma-st-k60-d21
  50. https://en.wind-turbine-models.com/turbines/1876- dencon-tornado-200-26
  51. Y.-Y. Lu, Y.-D. Hu, X.-L. Zhang, L.-Y. Wu, Q.-Z. Liu, Optimum design of reverse osmosis system under different feed concentration and product specification, J. Membr.Sci., 287 (2007) 219–229.
  52. A. Malek, M.N.A. Hawlader, J.C. Ho, Design and economics of RO seawater desalination, Desalination, 105 (1996) 245–261.
  53. M. D’Adda, Fixed-capital cost estimating, Catal. Today, 34 (1997) 457–467.
  54. Y. Dreizin, Ashkelon seawater desalination project? off-taker? self costs, supplied water costs, total costs and benefits, Desalination, 190 (2006) 104–116.
  55. T. Sherwood, P. Brian, R. Fisher, Desalination by reverse osmosis, Ind. Eng. Chem. Fundam., 6 (1967) 2–12.
  56. J. Schultz, Synthetic Membranes: Science, Engineering and Applications, P.M. Bungay, H.K. Lonsdale, M.N. de Pinho, Eds., D. Reidel Publishing Co., Dordrecht, 1986, pp. 523–566.
  57. A. Da Costa, A. Fane, D. Wiley, Spacer characterization and pressure drop modelling in spacer-filled channels for ultrafiltration, J. Membr. Sci., 87 (1994) 79–98.
  58. Sourirajan, Reverse Osmosis, Logos Press Ltd., London, UK, 1970.