References

  1. S. Rana, N. Gupta, R.S. Rana, Removal of Organic pollutant with the use of Rotating Biological Contactor, Mater. Today:. Proc., 5 (2018) 4218–4224.
  2. S. Zinadini, M. Rahimi, A.A. Zinatizadeh, Z.S. Mehrabadi, High frequency ultrasound-induced sequence batch reactor as a practical solution for high rate wastewater treatment, J. Environ. Chem. Eng., 3 (2015) 217–226.
  3. Metcalf & Eddy, Inc., Wastewater Engineering: Treatment and Reuse, 5th ed., McGraw-Hill Education, United States of America, 2014.
  4. M.R. Alavi Maghaddam, H. Satoh, T. Mino, Effect of important operational parameters on performance of coarse pore filtration activated sludge process, Water Sci. Technol., 46 (2002a) 229–236.
  5. M.R. Alavi Moghaddam, H. Satoh, T. Mino, Performance of coarse pore filtration activated sludge system, Water Sci. Technol., 46 (2002b) 71–76.
  6. M.R. Alavi Moghaddam, Y. Guan, H. Satoh, T. Mino, Performance and microbial dynamics in the coarse pore filtration activated sludge process at different SRTs (solids retention times), Water Sci. Technol., 47 (2003) 73–80.
  7. M.R. Alavi Moghaddam, Y. Guan, H. Satoh, T. Mino, Filter clogging in coarse pore filtration activated sludge process under high MLSS concentration, Water Sci. Technol., 54 (2006) 55–66.
  8. A.K. Orhon, K.B. Orhon, U. Yetis, F.B. Dilek, Fate of triclosan in laboratory-scale activated sludge reactors - effect of culture acclimation, J. Environ. Manage., 216 (2018) 320–327.
  9. A.A. Vaigan, M.R. Alavi Moghaddam, H. Hashemi, Aerobic sequencing batch reactor system with granular activated carbon for the treatment of wastewater containing a reactive dye, Environ. Eng. Manage. J., 9 (2010) 407–411.
  10. M. Bagheri, S.A. Mirbagheri, Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater, Bioresour. Technol., 258 (2018) 318–334.
  11. N. Fallah, B. Bonakdarpour, B. Nasernejad, M.R. Alavi Moghadam, Long-term operation of submerged membrane bioreactor (MBR) for the treatment of synthetic wastewater containing styrene as volatile organic compound (VOC): effect of hydraulic retention time (HRT), J. Hazard. Mater., 178 (2010) 718–724.
  12. M. Hasani Zonoozi, M.R. Alavi Moghaddam, R. Maknoon, Investigation of HRT effects on membrane fouling in sequencing batch membrane bioreactor with respect to batch filtration mode, Environ. Prog. Sustainable Energy, 36 (2017) 1785–1793.
  13. M. Hasani Zonoozi, M.R. Alavi Moghaddam, R. Maknoon, Operation of integrated sequencing batch membrane bioreactor treating dye-containing wastewater at different SRTs: study of overall performance and fouling behavior, Environ. Sci. Pollut. Res., 22 (2015) 5931–5942.
  14. M. Hasani Zonoozi, M.R. Alavi Moghaddam, R. Maknoon, Decolorization kinetics and characteristics of the azo dye acid red 18 in MSBR system at various HRTs and SRTs, Membr. Water Treat., 5 (2014) 281–293.
  15. V. Jegatheesan, B.K. Pramanik, J.Y. Chen, D. Navaratna, C.-Y. Chang, L. Shu, Treatment of textile wastewater with membrane bioreactor: a critical review, Bioresour. Technol., 204 (2016) 202–212.
  16. S.N.H.A. Bakar, H.A. Hasan, A.W. Mohammad, S.R.S. Abdullah, T.Y. Haan, R. Ngteni, K.M.M. Yusof, A review of moving-bed biofilm reactor technology for palm oil mill effluent treatment, J. Cleaner Prod., 171 (2018) 1532–1545.
  17. E. Hosseini Koupaie, M.R. Alavi Moghaddam, H. Hashemi, Comparison of overall performance between moving-bed and conventional sequencing batch reactor, Iran. J. Environ. Health Sci. Eng., 8 (2011a) 235–244.
  18. A. Saha, S. Bhushan, P. Mukherjee, C. Chanda, M. Bhaumik, M. Ghosh, J. Sharmin, P. Datta, S. Banerjee, P. Barat, A.R. Thakur, L.M. Gantayet, I. Mukherjee, S.R. Chaudhuri, Simultaneous sequestration of nitrate and phosphate from wastewater using a tailor‐made bacterial consortium in biofilm bioreactor, J. Chem. Technol. Biotechnol., 93 (2018) 1279–1289.
  19. P. Rybarczyk, B. Szulczyński, J. Gębicki, J. Hupka, Treatment of malodorous air in biotrickling filters: a review, Biochem. Eng. J., 141 (2018) 146–162.
  20. Q. Zhang, F.Y. Ji, X.Y. Xu, Optimization of nitrate removal from wastewater with a low C/N ratio using solid-phase denitrification, Environ. Sci. Pollut. Res. Int., 23 (2016) 698–708.
  21. T. Najib, M. Solgi, A. Farazmand, S.M. Heydarian, B. Nasernejad, Optimization of sulfate removal by sulfate reducing bacteria using response surface methodology and heavy metal removal in a sulfidogenic UASB reactor, J. Environ. Chem. Eng., 5 (2017) 3256–3265.
  22. R. Camarillo, J. Rincón, Effect of inhibitory compounds on the two-phase anaerobic digestion performance of diluted wastewaters from the alimentary industry, J. Chem. Technol. Biotechnol., 84 (2009) 1615–1623.
  23. G. Wang, X.C. Xu, Z. Gong, F. Gao, F.L. Yang, H.M. Zhang, Study of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in an intermittent aeration membrane bioreactor, Process Biochem., 51 (2016) 632–641.
  24. Y.Y. Ren, M. Yu, C.F. Wu, Q.H. Wang, M. Gao, Q.Q. Huang, Y. Liu, A comprehensive review on food waste anaerobic digestion: research updates and tendencies, Bioresour. Technol., 247 (2018) 1069–1076.
  25. A. Azizi, M.R. Alavi Moghaddam, R. Maknoon, E. Kowsari, Comparison of three combined sequencing batch reactor followed by enhanced Fenton process for an azo dye degradation: bio-decolorization kinetics study, J. Hazard. Mater., 299 (2015a) 343–350.
  26. A. Azizi, M.R. Alavi Moghaddam, R. Maknoon, E. Kowsari, Innovative combined technique for high concentration of azo dye AR18 wastewater treatment using modified SBR and enhanced Fenton process as post treatment, Process Saf. Environ. Prot., 95 (2015b) 255–264.
  27. A.A. Forbis-Stokes, L. Rocha-Melogno, M.A. Deshusses, Nitrifying trickling filters and denitrifying bioreactors for nitrogen management of high-strength anaerobic digestion effluent, Chemosphere, 204 (2018) 119–129.
  28. M. Hakimelahi, M.R. Alavi Moghaddam, S.H. Hashemi, Comparison of different duration of anaerobic and aerobic phases on acid red 18 removal in sequencing batch reactors, Environ. Eng. Manage. J., 15 (2016) 2529–2535.
  29. M. Hakimelahi, M.R. Alavi Moghaddam, S.H. Hashemi, Biological treatment of wastewater containing an azo dye using mixed culture in alternating anaerobic/aerobic sequencing batch reactors, Biotechnol. Bioprocess Eng., 17 (2012) 874–880.
  30. E. Hosseini Koupaie, M.R. Alavi Moghaddam, S.H. Hashemi, Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye Acid Red 18: comparison of using two types of packing media, Bioresour. Technol., 127 (2013a) 415–421.
  31. E. Hosseini Koupaie, M.R. Alavi Moghaddam, S.H. Hashemi, Successful treatment of high azo dye concentration wastewater using combined anaerobic/aerobic granular activated carbonsequencing batch biofilm reactor (GAC-SBBR): simultaneous adsorption and biodegradation processes, Water Sci. Technol., 67 (2013b) 1816–1821.
  32. E. Hosseini Koupaie, M.R. Alavi Moghaddam, S.H. Hashemi, Investigation of decolorization kinetics and biodegradation of azo dye Acid Red 18 using sequential process of anaerobic sequencing batch reactor/moving bed sequencing batch biofilm reactor, Int. Biodeterior. Biodegrad., 71 (2012) 43–49.
  33. E. Hosseini Koupaie, M.R. Alavi Moghaddam, S.H. Hashemi, Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: enhanced removal of aromatic amines, J. Hazard. Mater., 195 (2011b) 147–154.
  34. Y. Liu, J.-H. Tay JH, State of the art of biogranulation technology for wastewater treatment, Biotechnol. Adv., 22 (2004) 533–563.
  35. S. Sadri Moghaddam, M.R. Alavi Moghaddam, Aerobic granular sludge for dye biodegradation in a sequencing batch reactor with anaerobic/aerobic cycles, CLEAN Soil Air Water, 44 (2016) 438–443.
  36. S. Sadri Moghaddam, M.R. Alavi Moghaddam, Cultivation of aerobic granules under different pre-anaerobic reaction times in sequencing batch reactors, Sep. Purif. Technol., 142 (2015) 149–154.
  37. S. Sadri Moghaddam, M.R. Alavi Moghaddam, Investigating the influence of elongated anaerobic feeding strategy on aerobic sludge granulation and characteristics in sequencing batch reactor, Water Sci. Technol., 70 (2014) 249–255.
  38. C.H. Shin, J.H. Bae, Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: a critical review, Bioresour. Technol., 247 (2018) 1038–1046.
  39. S. Mehrali, M.R. Alavi Moghaddam, S.H. Hashemi, Feasibility study of several cyclic anaerobic/aerobic conditions in SBR system for treating of simulated dye (reactive blue19) wastewater, Environ. Eng. Manage. J., 11 (2012) 617–621.
  40. A.T. Nair, A.R. Makwana, M.M. Ahammed, The use of response surface methodology for modelling and analysis of water and wastewater treatment processes: a review, Water Sci. Technol., 69 (2014) 464–478.
  41. D.C. Montgomery, Design and Analysis of Experiments, 9th ed., John Wiley & Sons, Hoboken, New Jersey, United States, 2017.
  42. E. Nazlabadi, M.R. Alavi Moghaddam, E. Karamati- Niaragh, Simultaneous removal of nitrate and nitrite using electrocoagulation/floatation (ECF): a new multi-response optimization approach, J. Environ. Manage., 250 (2019) 109489, doi: 10.1016/j.jenvman.2019.109489.
  43. Engineering Statistics e-Handbook, NIST/SEMATECH e-Handbook of Statistical Methods. Available at: http://www.itl. nist.gov/div898/handbook/, Access Date: 2019.
  44. S. Karimifard, M.R. Alavi Moghaddam, Application of response surface methodology in physicochemical removal of dyes from wastewater: a critical review, Sci. Total Environ., 640 (2018) 772–797.
  45. A.I. Khuri, J.A. Cornell, Response Surfaces: Designs and Analyses, Marcel Dekker, New York, 1987.
  46. R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, Hoboken, New Jersey, United States, 2016.
  47. G.E.P. Box, K.B. Wilson, On the experimental attainment of optimum conditions, J. R. Stat. Soc. Ser. B Stat. Methodol., 13 (1951) 1–38.
  48. R. Mead, D.J. Pike, A biometrics invited paper. A review of response surface methodology from a biometric viewpoint, Biometrics, 31 (1975) 803–851.
  49. G.E.P. Box, Design and Analysis of Industrial Experiments, O.L. Davies, Ed., Oliver and Boyd (for Imperial Chemical Industries Ltd.), London and Edinburgh, 1954, pp. xiii + 636.
  50. W.J. Hill, W.G. Hunter, A review of response surface methodology: a literature survey, Technometrics, 8 (1966) 571–590.
  51. G.E.P. Box, The exploration and exploitation of response surfaces: some general considerations and examples, Biometrics, 10 (1954) 16–60.
  52. R.A. Bradley, Determination of optimum operating conditions by experimental methods, Part I, Ind. Qual. Control, 15 (1958) 16.
  53. J.S. Hunter, Determination of optimum conditions by experimental methods, Part II–1, Ind. Qual. Control, 15 (1958) 16.
  54. J.S. Hunter, Determination of optimum conditions by experimental methods, Part II–2, Ind. Qual. Control, 15 (1959a) 7.
  55. J.S. Hunter, Determination of optimum conditions by experimental methods, Part II–3, Ind. Qual. Control, 15 (1959b) 6.
  56. W.G. Cochran, G.M. Cox, Experimental Designs, John Wiley & Sons, New York, 1957, p. 335.
  57. G.H. Box, W.G. Hunter, J.S. Hunter, Statistics for Experimenters, John Wiley & Sons, New York, 1978.
  58. W.J. Diamond, Practical Experimental Designs for Engineers and Scientists, 2nd ed., Wiley, New York, 1989.
  59. M.B. Salehi, M.V. Sefti, A.M. Moghadam, A.D. Koohi, Study of salinity and pH effects on gelation time of a polymer gel using central composite design method, J. Macromol. Sci. Part B Phys., 51 (2012) 438–451.
  60. P.W.M. John, Statistical Design and Analysis of Experiments, Society for Industrial and Applied Mathematics, University City Science Center, Philadelphia, 1998.
  61. G.E. Box, N.R. Draper, Empirical Model-Building and Response Surfaces, John Wiley & Sons, England, 1987.
  62. Scopus, Scopus Content Coverage Guide, Elsevier, Netherlands, August 2017.
  63. N. Karami, P. Mohammadi, A. Zinatizadeh, F. Falahi, N. Aghamohammadi, High rate treatment of hospital wastewater using activated sludge process induced by highfrequency ultrasound, Ultrason. Sonochem., 46 (2018) 89–98.
  64. M. Pirsaheb, M. Mohamadi, A.M. Mansouri, A.A.L. Zinatizadeh, S. Sumathi, K. Sharafi, Process modeling and optimization of biological removal of carbon, nitrogen and phosphorus from hospital wastewater in a continuous feeding and intermittent discharge (CFID) bioreactor, Korean J. Chem. Eng., 32 (2015) 1340–1353.
  65. N. Abedinzadeh, M. Shariat, S.M. Monavari, A. Pendashteh, Evaluation of color and COD removal by Fenton from biologically (SBR) pre-treated pulp and paper wastewater, Process Saf. Environ. Prot., 116 (2018) 82–91.
  66. A. Barwal, R. Chaudhary, Application of response surface methodology to optimize the operational parameters for enhanced removal efficiency of organic matter and nitrogen: moving bed biofilm reactor, Environ. Sci. Pollut. Res., 23 (2016) 9944–9955.
  67. H. Farraji, N.Q. Zaman, H.A. Aziz, S.K.M. Sa’at, Palm oil mill effluent and municipal wastewater co-treatment by zeolite augmented sequencing batch reactors: turbidity removal, AIP Conf. Proc., 1892 (2017) 040013, doi: 10.1063/1.5005693.
  68. H.-Y. Fu, P.-C. Xu, G.-H. Huang, T. Chai, M. Hou, P.-F. Gao, Effects of aeration parameters on effluent quality and membrane fouling in a submerged membrane bioreactor using Box–Behnken response surface methodology, Desalination, 302 (2012) 33–42.
  69. S. Ibrahim, N.A. Wahab, A.N. Anuar, M. Bob, Parameter optimisation of aerobic granular sludge at high temperature using response surface methodology, Int. J. Electr. Comput. Eng., 7 (2017) 1522–1529.
  70. M. Jamshidi, A.A. Zinatizadeh, S. Rezaee, A. Asadi, Process performance of a granular single bioreactor with continuous feeding and intermittent discharge regime treating dairy wastewater, Int. J. Eng., 32 (2019) 10–17.
  71. A. Asadi, A.A.L. Zinatizadeh, S. Sumathi, N. Rezaie, S. Kiani, A comparative study on performance of two aerobic sequencing batch reactors with flocculated and granulated sludge treating an industrial estate wastewater: process analysis and modeling, Int. J. Eng. Trans. B Appl., 26 (2012) 105–116.
  72. F.K. Banaei, A.A.L. Zinatizadeh, M. Mesgar, Z. Salari, S. Sumathi, Effect of biomass concentration and aeration rate on performance of a full-scale industrial estate wastewater treatment plant, J. Environ. Chem. Eng., 1 (2013) 1144–1153.
  73. A. Mojiri, H.A. Aziz, N.Q. Zaman, S.Q. Aziz, M.A. Zahed, Metals removal from municipal landfill leachate and wastewater using adsorbents combined with biological method, Desal. Water Treat., 57 (2016) 2819–2833.
  74. D.-X. Hu, Y. Tian, Z.-B. Chen, H. Ge, Y.-B. Cui, C.-Q. Ran, Improving the simultaneous removal of chemical oxygen demand and terephthalic acid in a cross-flow aerobic sludge reactor by using response surface methodology, Water Sci. Technol., 71 (2015) 1823–1830.
  75. M. Rajasimman, S.V. Babu, N. Rajamohan, Biodegradation of textile dyeing industry wastewater using modified anaerobic sequential batch reactor – start-up, parameter optimization and performance analysis, J. Taiwan Inst. Chem. Eng., 72 (2017) 171–181.
  76. S. Sathian, M. Rajasimman, G. Radha, V. Shanmugapriya, C. Karthikeyan, Performance of SBR for the treatment of textile dye wastewater: optimization and kinetic studies, Alexandria Eng. J., 53 (2014) 417–426.
  77. C.F. Bustillo-Lecompte, M. Mehrvar, Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: modeling, optimization, and cost-effectiveness analysis, J. Environ. Manage., 182 (2016) 651–666.
  78. S.C. Azimi, F. Shirini, A. Pendashteh, Evaluation of COD and turbidity removal from woodchips wastewater using biologically sequenced batch reactor, Process Saf. Environ. Prot., 128 (2019) 211–227.
  79. V.G. Khondabi, A. Fazlali, M. Arjomandzadegan, Biological treatment of phenol from petroleum refinery wastewater using mixed indigenous cultures in a rotating biological contactor: experimental and statistical studies, Desal. Water Treat., 160 (2019) 135–143.
  80. M. Ahmadi, N. Amiri, M. Pirsaheb, P. Amiri, Application of the central composite design for the treatment of soft drink factory wastewater in two-stage aerobic sequencing batch reactors combined with ozonation, Desal. Water Treat., 57 (2016) 19077–19086.
  81. M. Amini, H. Younesi, G. Najafpour, A.A. Zinatizadeh- Lorestani, Application of response surface methodology for simultaneous carbon and nitrogen (SND) removal from dairy wastewater in batch systems, Int. J. Environ. Stud., 69 (2012) 962–986.
  82. E. Ashrafi, A.M. Zeinabad, S.M. Borghei, E. Torresi, J.M. Sierra, Optimising nutrient removal of a hybrid five-stage Bardenpho and moving bed biofilm reactor process using response surface methodology, J. Environ. Chem. Eng., 7 (2019) 102861, doi: 10.1016/j.jece.2018.102861.
  83. A. Barwal, R. Chaudhary, Optimization of operational parameters in moving bed biofilm reactor with low cost polystyrene biocarrier by the response surface method, Water Qual. Res. J. Can., 52 (2017) 26–41.
  84. M.D. Chang, Y.Z. Wang, Y. Pan, K. Zhang, L.T. Lyu, M. Wang, T. Zhu, Nitrogen removal from wastewater via simultaneous nitrification and denitrification using a biological folded non-aerated filter, Bioresour. Technol., 289 (2019) 121696, doi: 10.1016/j.biortech.2019.121696.
  85. L. Chen, C.Q. Cao, Characteristics and simulation of soluble microbial products in membrane bioreactors coupled with moving carriers (MBR-MC), Desal. Water Treat., 40 (2012) 45–55.
  86. R. Darvishi Cheshmeh Soltani, A. Rezaee, A.R. Khataee, H. Godini, Optimisation of the operational parameters during a biological nitrification process using response surface methodology, Can. J. Chem. Eng., 92 (2014) 13–22.
  87. S. Dey, S. Mukherjee, Performance study and kinetic modeling of hybrid bioreactor for treatment of bi-substrate mixture of phenol-m-cresol in wastewater: process optimization with response surface methodology, J. Environ. Sci.-China, 25 (2013) 698–709.
  88. M. Mirghorayshi, A.A. Zinatizadeh, M. Van Loosdrecht, Evaluating the process performance and potential of a highrate single airlift bioreactor for simultaneous carbon and nitrogen removal through coupling different pathways from a nitrogen-rich wastewater, Bioresour. Technol., 260 (2018) 44–52.
  89. T.P. Nguyen, N. Hilal, N.P. Hankins, Operating conditions corresponding to optimal final properties of activated sludge using the DOE and RSM techniques, Sep. Sci. Technol., 44 (2009) 2041–2066.
  90. F. Qaderi, A.H. Sayahzadeh, M. Azizi, Efficiency optimization of petroleum wastewater treatment by using of serial moving bed biofilm reactors, J. Cleaner Prod., 192 (2018) 665–677.
  91. Z.S. Mehrabadi, A.A.L. Zinatizadeh, Performance of a compartmentalized activated sludge (CAS) system treating a synthetic antibiotics industrial wastewater (SAW), J. Water Process Eng., 3 (2014) 26–33.
  92. S.N. Shim, S.-R. Kim, S.J. Jo, K.-M. Yeon, C.-H. Lee, Evaluation of mechanical membrane cleaning with moving beads in MBR using Box–Behnken response surface methodology, Desal. Water Treat., 56 (2014) 2797–2806.
  93. R.K. Sonwani, G. Swain, B.S. Giri, R.S. Singh, B.N. Rai, A novel comparative study of modified carriers in moving bed biofilm reactor for the treatment of wastewater: process optimization and kinetic study, Bioresour. Technol., 281 (2019) 335–342.
  94. Y.Z. Wang, M.D. Chang, Y. Pan, K. Zhang, L.T. Lyu, M. Wang, T. Zhu, Performance analysis and optimization of ammonium removal in a new biological folded non-aerated filter reactor, Sci. Total Environ., 688 (2019) 505–512.
  95. V. Zeynali, J. Sargolzaei, A. Hedayati Moghaddam, S.M. Ali Masoudi, Implication of statistical design approach methodology for optimization of COD removal, effluent quality, and biosludge settling properties in aerobic bioreactors, Environ. Prog. Sustainable Energy, 36 (2017) 1428–1438.
  96. V. Zeynali, J. Sargolzaei, A. Hedayati Moghaddam, Optimization of several hydrodynamic and non-hydrodynamic operating parameters in treatment of synthetic wastewater containing wheat starch in a sequencing batch reactor (SBR) using response surface methodology, Desal. Water Treat., 57 (2016) 24240–24256.
  97. L. Zhou, B. Peng, K. Xiao, Role of micronutrients on dyeing wastewater treatment in activated sludge process, Water Environ. Res., 89 (2017) 221–227.
  98. A.A.L. Zinatizadeh, Y. Mansouri, A. Akhbari, S. Pashaei, Biological treatment of a synthetic dairy wastewater in a sequencing batch biofilm reactor: statistical modeling using optimization using response surface methodology, Chem. Ind. Chem. Eng. Q., 17 (2011) 485–495.
  99. S. Saha, N. Badhe, S. Pal, R. Biswas, T. Nandy, Carbon and nutrient-limiting conditions stimulate biodegradation of low concentration of phenol, Biochem. Eng. J., 126 (2017) 40–49.
  100. A. Mojiri, H.A. Aziz, N.Q. Zaman, S.Q. Aziz, M.A. Zahed, Powdered ZELIAC augmented sequencing batch reactors (SBR) process for co-treatment of landfill leachate and domestic wastewater, J. Environ. Manage., 139 (2014) 1–14.
  101. A.A. Zinatizadeh Lorestani, H. Bashiri, A. Asadi, H. Bonakdari, Comparison of different fluid dynamics in activated sludge system for the treatment of a stimulated milk processing wastewater: process analysis and optimization, Korean J. Chem. Eng., 29 (2012) 1352–1361.
  102. A.A. Zinatizadeh, H. Bonakdari, M. Pirsaheb, E. Gharacheh, Response surface analysis and statistical modeling of sulfide generation from municipal wastewater, CLEAN–Soil Air Water, 39 (2011) 444–459.
  103. R. Sridhar, V. Sivakumar, K. Thirugnanasambandham, Response surface modeling and optimization of upflow anaerobic sludge blanket reactor process parameters for the treatment of bagasse-based pulp and paper industry wastewater, Desal. Water Treat., 57 (2016) 4345–4356.
  104. P. Boonsawang, A. Rerngnarong, C. Tongurai, S. Chaiprapat, Effect of pH, OLR, and HRT on performance of acidogenic and methanogenic reactors for treatment of biodiesel wastewater, Desal. Water Treat., 54 (2015) 3317–3327.
  105. W. Kim, K.Y. Hwang, S.G. Shin, S.Y. Lee, S.W. Hwang, Effect of high temperature on bacterial community dynamics in anaerobic acidogenesis using mesophilic sludge inoculum, Bioresour. Technol., 101 (2010) S17–S22.
  106. X.-Y. Shi, D.-W. Jin, Q.-Y. Sun, W.-W. Li, Optimization of conditions for hydrogen production from brewery wastewater by anaerobic sludge using desirability function approach, Renewable Energy, 35 (2010) 1493–1498.
  107. A. Ndobeni, O. Oyekola, P.J. Welz, Organic removal rates and biogas production of an upflow anaerobic sludge blanket reactor treating sugarcane molasses, S. Afr. J. Chem. Eng., 28 (2019) 1–7.
  108. H. Chen, J.-J. Yu, X.-Y. Jia, R.-C. Jin, Enhancement of anammox performance by Cu(II), Ni(II) and Fe(III) supplementation, Chemosphere, 117 (2014) 610–616.
  109. B.-S. Xing, Q. Guo, Z.-Z. Zhang, J. Zhang, H.-Z. Wang, R.-C. Jin, Optimization of process performance in a granulebased anaerobic ammonium oxidation (anammox) upflow anaerobic sludge blanket (UASB) reactor, Bioresour. Technol., 170 (2014) 404–412.
  110. A. Srisuwun, N. Tantiwa, A. Kuntiya, A. Kawee-ai, A. Manassa, C. Techapun, P. Seesuriyachan, Decolorization of Reactive Red 159 by a consortium of photosynthetic bacteria using an anaerobic sequencing batch reactor (AnSBR), Prep. Biochem. Biotechnol., 48 (2018) 303–311.
  111. A.M. Mansouri, A.A. Zinatizadeh, A comparative study of an up-flow aerobic/anoxic sludge fixed film bioreactor and sequencing batch reactor with intermittent aeration in simultaneous nutrients (N, P) removal from synthetic wastewater, Water Sci. Technol., 76 (2017) 1044–1058.
  112. A. Akhbari, A.A.L. Zinatizadeh, P. Mohammadi, M. Irandoust, Y. Mansouri, Process modeling and analysis of biological nutrients removal in an integrated RBC-AS system using response surface methodology, Chem. Eng. J., 168 (2011) 269–279.
  113. M.H. Kim, A.S. Rao, C.K. Yoo, Dual optimization strategy for N and P removal in a biological wastewater treatment plant, Ind. Eng. Chem. Res., 48 (2009) 6363–6371.
  114. X. Zhou, Q. Zhang, H.L. Sun, Q.L. Zhao, Efficient nitrogen removal from synthetic domestic wastewater in a novel stepfeed three-stage integrated anoxic/oxic biological aerated filter process through optimizing influent flow distribution ratio, J. Environ. Manage., 231(2019) 1277–1282.
  115. D.H. Choi, K.J. Cho, J.Y. Jung, Optimization of nitrogen removal performance in a single-stage SBR based on partial nitritation and ANAMMOX, Water Res., 162 (2019) 105–114.
  116. Y. Mortezaei, T. Amani, Sh. Elyasi, High-rate anaerobic digestion of yogurt wastewater in a hybrid EGSB and fixed-bed reactor: optimizing through response surface methodology, Process Saf. Environ. Prot., 113 (2018) 255–263.
  117. J. Jaafari, M. Seyedsalehi, G.H. Safari, M.E. Arjestan, H. Barzanouni, S. Ghadimi, H. Kamani, P. Haratipour, Simultaneous biological organic matter and nutrient removal in an anaerobic/anoxic/oxic (A2O) moving bed biofilm reactor (MBBR) integrated system, Int. J. Environ. Sci. Technol., 14 (2017) 291–304.
  118. R. Shokoohi, A.J. Jafari, A. Dargahi, Z. Torkshavand, Study of the efficiency of bio-filter and activated sludge (BF/AS) combined process in phenol removal from aqueous solution: determination of removing model according to response surface methodology (RSM), Desal. Water Treat., 77 (2017) 256–263.
  119. C.F. Bustillo-Lecompte, M. Mehrvar, Treatment of actual slaughterhouse wastewater by combined anaerobic–aerobic processes for biogas generation and removal of organics and nutrients: an optimization study towards a cleaner production in the meat processing industry, J. Cleaner Prod., 141 (2017) 278–289.
  120. A. Almasi, S.A. Mousavi, Z. Bahman, M.R. Zolfaghari, A.A. Zinatizadeh, Effect of hydraulic retention time and aeration time on the performance and microbial diversity in an upflow aerobic/anoxic sequential bioreactor, Desal. Water Treat., 57 (2016) 23589–23596.
  121. S. Rezaee, A.A.L. Zinatizadeh, A. Asadi, Comparative study on effect of mechanical mixing and ultrasound on the performance of a single up-flow anaerobic/aerobic/anoxic bioreactor removing CNP from milk processing wastewater, J. Taiwan Inst. Chem. Eng., 58 (2016) 297–309.
  122. S. Rezaee, A.A.L. Zinatizadeh, A. Asadi, High rate CNP removal from a milk processing wastewater in a single ultrasound augmented up-flow anaerobic/aerobic/anoxic bioreactor, Ultrason. Sonochem., 23 (2015) 289–301.
  123. X. Wu, J. Zhu, J.H. Cheng, N.W. Zhu, Optimization of three operating parameters for a two-step fed sequencing batch reactor (SBR) system to remove nutrients from swine wastewater, Appl. Biochem. Biotechnol., 174 (2015) 2857–2871.
  124. W. Dastyar, T. Amani, S. Elyasi, Investigation of affecting parameters on treating high-strength compost leachate in a hybrid EGSB and fixed-bed reactor followed by electrocoagulation–flotation process, Process Saf. Environ. Prot., 95 (2015) 1–11.
  125. A. Noroozi, M. Safari, N. Askari, Innovative hybrid-upflow sludge blanket filtration (H-USBF) combined bioreactor for municipal wastewater treatment using response surface methodology, Desal. Water Treat., 56 (2015) 2344–2350.
  126. F.-F. Qi, M.-H. Huang, Y. Zheng, Q. Xu, Optimization of an A2/O process for tetracycline removal via response surface methodology coupled with a Box–Behnken design, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 50 (2015) 735–743.
  127. S. Srinu Naik, Y. Pydi Setty, Optimization of parameters using response surface methodology and genetic algorithm for biological denitrification of wastewater, Int. J. Environ. Sci. Technol., 11 (2014) 823–830.
  128. Y.M. Li, J.T. Zou, L.L. Zhang, J. Sun, Aerobic granular sludge for simultaneous accumulation of mineral phosphorus and removal of nitrogen via nitrite in wastewater, Bioresour. Technol., 154 (2014) 178–184.
  129. H. Harun, A. Nor Anuar, Development and utilization of aerobic granules for soy sauce wastewater treatment: optimization by response surface methodology, J. Teknol., 69 (2014) 31–37.
  130. A.M. Mansouri, A.A. Zinatizadeh, M. Irandoust, A. Akhbari, Statistical analysis and optimization of simultaneous biological nutrients removal process in an intermittently aerated SBR, Korean J. Chem. Eng., 31 (2014) 88–97.
  131. A.N.D. Lima, B.M. Gomes, S.D. Gomes, K.Q.D. Carvalho, D. Christ, Application of response surface methodology to study the biological removal of nitrogen from effluent of cattle slaughterhouse in a sequencing batch reactor, Eng. Agr.- Jaboticabal., 34 (2014) 363–371.
  132. J.B.R. Mees, S.D. Gomes, S.C. Sampaio, S.D.M. Hasan, G.M.B. Caldereiro, C.S. de Cordovil, D.S. CM, Application of the response surface methodology for optimisation of biological nutrient removal from slaughterhouse effluents, J. Food Agric. Environ., 12 (2014) 786–792.
  133. A. Aris, K. Muda, M.R. Salim, Z. Ibrahim, COD and color removal from textile effluent using granular sludge biomass: effect of substrate and riboflavin, Desal. Water Treat., 52 (2014) 7366–7376.
  134. Y.J. Chan, C. Mei-Fong, L. Chung-Lim, Optimization of palm oil mill effluent treatment in an integrated anaerobic-aerobic bioreactor, Sustainable Environ. Res., 23 (2013) 153–170.
  135. M.H. Muhamad, S.R.S. Abdullah, A.B. Mohamad, R.A. Rahman, A.A.H. Kadhum, Application of response surface methodology (RSM) for optimisation of COD, NH3–N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR), J. Environ. Manage., 121 (2013) 179–190.
  136. A. Asadi, A.A.L. Zinatizadeh, M.H. Isa, Performance of intermittently aerated up-flow sludge bed reactor and sequencing batch reactor treating industrial estate wastewater: a comparative study, Bioresour. Technol., 123 (2012) 495–506.
  137. F. Qaderi, A.H. Sayahzadeh, F. Azizpour, P. Vosughi, Efficiency modeling of serial stabilization ponds in treatment of phenolic wastewater by response surface methodology, Int. J. Environ. Sci. Technol., 16 (2019) 4193–4202.
  138. A. Almasi, M. Mahmoudi, M. Mohammadi, A. Dargahi, H. Biglari, Optimizing biological treatment of petroleum industry wastewater in a facultative stabilization pond for simultaneous removal of carbon and phenol, Toxin Rev., (2019) 1–9, doi: 10.1080/15569543.2019.1573433.
  139. A. Dargahi, M. Mohammadi, F. Amirian, A. Karami, A. Almasi, Phenol removal from oil refinery wastewater using anaerobic stabilization pond modeling and process optimization using response surface methodology (RSM), Desal. Water Treat., 87 (2017)199–208.
  140. B.U. Okoro, N.E. Nwaiwu, Optimization of waste stabilization pond performance for piggery waste treatment using response surface methodology, Environ. Res. Eng. Manage., 73 (2017) 52–61.
  141. G. Qin, Y. Li, Y. Han, J. Zhang, J. Zhou, L. Chen, B. Gong, Application of constructed wetland to partial nitrification process: relations betweenparameter values and effluent outcome using response surface methodology, J. Chem. Pharm., 5 (2013) 413–417.