References
- Y. Tang, B. Zhong, B. Qu, S. Feng, S. Ding, S. Su, Z. Li, Z. Gan,
Occurrence of perchlorate in groundwater, paired farmland soil,
lettuce, and rhizosphere soil from Chengdu, China, Environ.
Sci. Processes Impacts, 19 (2017) 752–757.
- F. Cao, J. Jaunat, N. Sturchio, B. Cancès, X. Morvan, A. Devos,
V. Barbin, P. Ollivier, Worldwide occurrence and origin of
perchlorate ion in waters: a review, Sci. Total Environ., 661
(2019) 737–749.
- S.J. Luis, E.A. Miesner, C.L. Enslin, K. Heidecorn, Review of
perchlorate occurrence in large public drinking water systems
in the United States of America, Water Supply, 19 (2019)
681–694.
- R.C. Pleus, L.M. Corey, Environmental exposure to perchlorate:
a review of toxicology and human health, Toxicol. Appl.
Pharmacol., 358 (2018) 102–109.
- J.R. Batista, T.M. Gingras, A.R. Vieira, Combining ion-exchange
(IX) technology and biological reduction for perchlorate
removal, Remediation, 13 (2002) 21–38.
- T.M. Gingras, J.R. Batista, Biological reduction of perchlorate
in ion exchange regenerant solutions containing high salinity
and ammonium levels, J. Environ. Monit., 4 (2002) 96–101.
- N. Bardiya, J.H. Bae, Dissimilatory perchlorate reduction:
a review, Microbiol. Res., 166 (2011) 237–254.
- K.R. Han, T.H. Kang, H.C. Kang, K. Kim, D.H. Seo, Y. Ahn,
Autotrophic perchlorate-removal using elemental sulfur
granules and activated sludge: batch test, J. Life Sci., 21 (2011)
1473–1480.
- W. Song, B. Gao, X. Zhang, F. Li, X. Xu, Q. Yue, Biological
reduction of perchlorate in domesticated activated sludge
considering interaction effects of temperature, pH, electron
donors and acceptors, Process Saf. Environ. Prot., 123 (2019)
169–178.
- Y. Zhu, N. Gao, W. Chu, S. Wang, J. Xu, Bacterial reduction
of highly concentrated perchlorate: kinetics and influence of
co-existing electron acceptors, temperature, pH and electron
donors, Chemosphere, 148 (2016) 188–194.
- Y. Shang, Z. Wang, X. Xu, B. Gao, Z. Ren, Bio-reduction of
free and laden perchlorate by the pure and mixed perchlorate
reducing bacteria: considering the pH and coexisting nitrate,
Chemosphere, 205 (2018) 475–483.
- Y. Ahn, Removal of perchlorate from salt water using
microorganisms, J. Life Sci., 29 (2019) 1294–1303.
- V.K. Nguyen, Y. Ahn, Electrochemical removal and recovery
of iron from groundwater using non-corrosive electrodes,
J. Environ. Manage., 211 (2018) 36–41.
- V.K. Nguyen, M. Ha, S. Shin, M. Seo, J. Jang, S. Jo, D. Kim,
S. Lee, Y. Jung, P. Kang, C. Shin, Y. Ahn, Electrochemical
effect on bioleaching of arsenic and manganese from tungsten
mine wastes using Acidithiobacillus spp., J. Environ. Manage.,
223 (2018) 852–859.
- M.Y. Rusanova, P. Polášková, M. Muzikař, W.R. Fawcett,
Electrochemical reduction of perchlorate ions on platinumactivated
nickel, Electrochim. Acta, 51 (2006) 3097–3101.
- G.M. Brown, The reduction of chlorate and perchlorate ions at
an active titanium electrode, J. Electroanal. Chem. Interfacial
Electrochem., 198 (1986) 319–330.
- C.M.V.B. Almeida, B.F. Giannetti, T. Rabockai, Electrochemical
study of perchlorate reduction at tin electrodes, J. Electroanal.
Chem., 422 (1997) 185–189.
- E. Brauns, Salinity gradient power by reverse electrodialysis:
effect of model parameters on electrical power output,
Desalination, 237 (2009) 378–391.
- S. Pawlowski, R.M. Huertas, C.F. Galinha, J.G. Crespo,
S. Velizarov, On operation of reverse electrodialysis (RED) and
membrane capacitive deionisation (MCDI) with natural saline
streams: a critical review, Desalination, 476 (2020) 114183,
doi: 10.1016/j.desal.2019.114183.
- H. Tian, Y. Wang, Y. Pei, J.C. Crittenden, Unique applications
and improvements of reverse electrodialysis: a review and
outlook, Appl. Energy, 262 (2020) 114482, doi: 10.1016/j.
apenergy.2019.114482.
- J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Reverse
electrodialysis: evaluation of suitable electrode systems, J. Appl.
Electrochem., 40 (2010) 1461–1474.
- O. Scialdone, A.D’. Angelo, E.D. Lumè, A. Galia, Cathodic
reduction of hexavalent chromium coupled with electricity
generation achieved by reverse-electrodialysis processes using
salinity gradients, Electrochim. Acta, 137 (2014) 258–265.
- O. Scialdone, A.D’. Angelo, A. Galia, Energy generation and
abatement of Acid Orange 7 in reverse electrodialysis cells
using salinity gradients, J. Electroanal. Chem., 738 (2015) 61–68.
- Y. Zhou, K. Zhao, C. Hu, H. Liu, Y. Wang, J. Qu, Electrochemical
oxidation of ammonia accompanied with electricity generation
based on reverse electrodialysis, Electrochim. Acta, 269 (2018)
128–135.
- A.D’. Angelo, A. Galia, O. Scialdone, Cathodic abatement
of Cr(VI) in water by microbial reverse-electrodialysis cells,
J. Electroanal. Chem., 748 (2015) 40–46.
- X. Li, X. Jin, N. Zhao, I. Angelidaki, Y. Zhang, Novel bio-electro-
Fenton technology for azo dye wastewater treatment using
microbial reverse-electrodialysis electrolysis cell, Bioresour.
Technol., 228 (2017) 322–329.
- M. Sui, Y. Dong, H. You, Enhanced photocatalytic activity for
the degradation of rhodamine B by integrating salinity gradient
power into a photocatalytic fuel cell, RSC Adv., 5 (2015)
94184–94190.
- H. Tian, Y. Wang, Y. Pei, Energy capture from thermolytic
solutions and simulated sunlight coupled with hydrogen
peroxide production and wastewater remediation, Water Res.,
170 (2020) 115318, doi: 10.1016/j.watres.2019.115318.
- Y. Kim, B.E. Logan, Hydrogen production from inexhaustible
supplies of fresh and salt water using microbial reverseelectrodialysis
electrolysis cells, PNAS, 108 (2011) 16176–16181.