References

  1. Y. Tang, B. Zhong, B. Qu, S. Feng, S. Ding, S. Su, Z. Li, Z. Gan, Occurrence of perchlorate in groundwater, paired farmland soil, lettuce, and rhizosphere soil from Chengdu, China, Environ. Sci. Processes Impacts, 19 (2017) 752–757.
  2. F. Cao, J. Jaunat, N. Sturchio, B. Cancès, X. Morvan, A. Devos, V. Barbin, P. Ollivier, Worldwide occurrence and origin of perchlorate ion in waters: a review, Sci. Total Environ., 661 (2019) 737–749.
  3. S.J. Luis, E.A. Miesner, C.L. Enslin, K. Heidecorn, Review of perchlorate occurrence in large public drinking water systems in the United States of America, Water Supply, 19 (2019) 681–694.
  4. R.C. Pleus, L.M. Corey, Environmental exposure to perchlorate: a review of toxicology and human health, Toxicol. Appl. Pharmacol., 358 (2018) 102–109.
  5. J.R. Batista, T.M. Gingras, A.R. Vieira, Combining ion-exchange (IX) technology and biological reduction for perchlorate removal, Remediation, 13 (2002) 21–38.
  6. T.M. Gingras, J.R. Batista, Biological reduction of perchlorate in ion exchange regenerant solutions containing high salinity and ammonium levels, J. Environ. Monit., 4 (2002) 96–101.
  7. N. Bardiya, J.H. Bae, Dissimilatory perchlorate reduction: a review, Microbiol. Res., 166 (2011) 237–254.
  8. K.R. Han, T.H. Kang, H.C. Kang, K. Kim, D.H. Seo, Y. Ahn, Autotrophic perchlorate-removal using elemental sulfur granules and activated sludge: batch test, J. Life Sci., 21 (2011) 1473–1480.
  9. W. Song, B. Gao, X. Zhang, F. Li, X. Xu, Q. Yue, Biological reduction of perchlorate in domesticated activated sludge considering interaction effects of temperature, pH, electron donors and acceptors, Process Saf. Environ. Prot., 123 (2019) 169–178.
  10. Y. Zhu, N. Gao, W. Chu, S. Wang, J. Xu, Bacterial reduction of highly concentrated perchlorate: kinetics and influence of co-existing electron acceptors, temperature, pH and electron donors, Chemosphere, 148 (2016) 188–194.
  11. Y. Shang, Z. Wang, X. Xu, B. Gao, Z. Ren, Bio-reduction of free and laden perchlorate by the pure and mixed perchlorate reducing bacteria: considering the pH and coexisting nitrate, Chemosphere, 205 (2018) 475–483.
  12. Y. Ahn, Removal of perchlorate from salt water using microorganisms, J. Life Sci., 29 (2019) 1294–1303.
  13. V.K. Nguyen, Y. Ahn, Electrochemical removal and recovery of iron from groundwater using non-corrosive electrodes, J. Environ. Manage., 211 (2018) 36–41.
  14. V.K. Nguyen, M. Ha, S. Shin, M. Seo, J. Jang, S. Jo, D. Kim, S. Lee, Y. Jung, P. Kang, C. Shin, Y. Ahn, Electrochemical effect on bioleaching of arsenic and manganese from tungsten mine wastes using Acidithiobacillus spp., J. Environ. Manage., 223 (2018) 852–859.
  15. M.Y. Rusanova, P. Polášková, M. Muzikař, W.R. Fawcett, Electrochemical reduction of perchlorate ions on platinumactivated nickel, Electrochim. Acta, 51 (2006) 3097–3101.
  16. G.M. Brown, The reduction of chlorate and perchlorate ions at an active titanium electrode, J. Electroanal. Chem. Interfacial Electrochem., 198 (1986) 319–330.
  17. C.M.V.B. Almeida, B.F. Giannetti, T. Rabockai, Electrochemical study of perchlorate reduction at tin electrodes, J. Electroanal. Chem., 422 (1997) 185–189.
  18. E. Brauns, Salinity gradient power by reverse electrodialysis: effect of model parameters on electrical power output, Desalination, 237 (2009) 378–391.
  19. S. Pawlowski, R.M. Huertas, C.F. Galinha, J.G. Crespo, S. Velizarov, On operation of reverse electrodialysis (RED) and membrane capacitive deionisation (MCDI) with natural saline streams: a critical review, Desalination, 476 (2020) 114183, doi: 10.1016/j.desal.2019.114183.
  20. H. Tian, Y. Wang, Y. Pei, J.C. Crittenden, Unique applications and improvements of reverse electrodialysis: a review and outlook, Appl. Energy, 262 (2020) 114482, doi: 10.1016/j. apenergy.2019.114482.
  21. J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Reverse electrodialysis: evaluation of suitable electrode systems, J. Appl. Electrochem., 40 (2010) 1461–1474.
  22. O. Scialdone, A.D’. Angelo, E.D. Lumè, A. Galia, Cathodic reduction of hexavalent chromium coupled with electricity generation achieved by reverse-electrodialysis processes using salinity gradients, Electrochim. Acta, 137 (2014) 258–265.
  23. O. Scialdone, A.D’. Angelo, A. Galia, Energy generation and abatement of Acid Orange 7 in reverse electrodialysis cells using salinity gradients, J. Electroanal. Chem., 738 (2015) 61–68.
  24. Y. Zhou, K. Zhao, C. Hu, H. Liu, Y. Wang, J. Qu, Electrochemical oxidation of ammonia accompanied with electricity generation based on reverse electrodialysis, Electrochim. Acta, 269 (2018) 128–135.
  25. A.D’. Angelo, A. Galia, O. Scialdone, Cathodic abatement of Cr(VI) in water by microbial reverse-electrodialysis cells, J. Electroanal. Chem., 748 (2015) 40–46.
  26. X. Li, X. Jin, N. Zhao, I. Angelidaki, Y. Zhang, Novel bio-electro- Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell, Bioresour. Technol., 228 (2017) 322–329.
  27. M. Sui, Y. Dong, H. You, Enhanced photocatalytic activity for the degradation of rhodamine B by integrating salinity gradient power into a photocatalytic fuel cell, RSC Adv., 5 (2015) 94184–94190.
  28. H. Tian, Y. Wang, Y. Pei, Energy capture from thermolytic solutions and simulated sunlight coupled with hydrogen peroxide production and wastewater remediation, Water Res., 170 (2020) 115318, doi: 10.1016/j.watres.2019.115318.
  29. Y. Kim, B.E. Logan, Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverseelectrodialysis electrolysis cells, PNAS, 108 (2011) 16176–16181.