References

  1. W. Wu, X. Zhang, L. Qin, X. Li, Q. Meng, C. Shen, G. Zhang, Enhanced MPBR with polyvinylpyrrolidone-graphene oxide/PVDF hollow fiber membrane for efficient ammonia nitrogen wastewater treatment and high-density Chlorella cultivation, Chem. Eng. J., 379 (2020) 122368, doi: 10.1016/j.cej.2019.122368.
  2. R. Xu, W. Qin, B. Zhang, X. Wang, T. Li, Y. Zhang, X. Wen, Nanofiltration in pilot scale for wastewater reclamation: longterm performance and membrane biofouling characteristics, Chem. Eng. J., 395 (2020) 125087, doi: 10.1016/j.cej.2020.125087.
  3. B. Wang, K. Zhang, R.W. Field, Novel economical three-stage slug bubbling process in a large-scale flat-sheet membrane bioreactor of double deck configuration, AlChE J., 66 (2020) e16501, doi: 10.1002/aic.16501.
  4. B. Wang, K. Zhang, R.W. Field, Optimization of aeration variables in a commercial large-scale flat-sheet MBR operated with slug bubbling, J. Membr. Sci., 567 (2018) 181–190.
  5. Z. Zhang, M.W. Bligh, Y. Wang, G.L. Leslie, H. Bustamante, T.D. Waite, Cleaning strategies for iron-fouled membranes from submerged membrane bioreactor treatment of wastewaters, J. Membr. Sci., 475 (2015) 9–21.
  6. P. Buzatu, H. Qiblawey, A. Odai, J. Jamaleddin, M. Nasser, S.J. Judd, Clogging vs fouling in immersed membrane bioreactors, Water Res., 144 (2018) 46–54.
  7. Y. Chen, J. Teng, L. Shen, G. Yu, R. Li, Y. Xu, F. Wang, B. Liao, H. Lin, Novel insights into membrane fouling caused by gel layer in a membrane bioreactor: effects of hydrogen bonding, Bioresour. Technol., 276 (2019) 219–225.
  8. K. Zeng, J. Zhou, Z. Cui, Y. Zhou, C. Shi, X. Wang, L. Zhou, X. Ding, Z. Wang, E. Drioli, Insight into fouling behavior of poly (vinylidene fluoride) (PVDF) hollow fiber membranes caused by dextran with different pore size distributions, Chin. J. Chem. Eng., 26 (2018) 268–277.
  9. Y. Zen, Z. Mao, Y. Zhang, W. See, T. Haur, B. Wu, Enhancing fouling mitigation of submerged flat-sheet membranes by vibrating 3D-spacers, Sep. Purif. Technol., 215 (2019) 70–80.
  10. B. Ma, W. Xue, Y. Bai, R. Liu, W. Chen, H. Liu, Enhanced alleviation of ultrafiltration membrane fouling by regulating cake layer thickness with pre-coagulation during drinking water treatment, J. Membr. Sci., 596 (2020) 117732, doi: 10.1016/j. memsci.2019.117732.
  11. J. Teng, L. Shen, Y. He, B. Liao, G. Wu, H. Lin, Novel insights into membrane fouling in a membrane bioreactor: elucidating interfacial interactions with real membrane surface, Chemosphere, 210 (2018) 769–778.
  12. F. Liu, M.R.M. Abed, K. Li, Preparation and characterization of poly(vinylidene fluoride) (PVDF) based ultrafiltration membranes using nano γ-Al2O3, J. Membr. Sci., 366 (2011) 97–103.
  13. W. Lang, Z. Xuan, J. Shen, H. Xu, Z. Xu, Y. Guo, The contrastive study of chemical treatment on the properties of PVDF/PFSA and PVDF/PVP ultrafiltration membranes, Desalination, 341 (2014) 72–82.
  14. P. Bei, H. Liu, H. Yao, Y. Jiao, Y. Wang, L. Guo, Preparation and characterization of a PVDF membrane modified by an ionic liquid, Aust. J. Chem., 72 (2019) 425–433.
  15. W. Chen, Y. Liu, J. Liu, Selecting aeration in a PVDF flat-sheet membrane bioreactor for municipal wastewater treatment, Desal. Water Treat., 57 (2016) 6193–6201.
  16. G.D. Kang, Y.M. Cao, Application and modification of poly(vinylidene fluoride) (PVDF) membranes – a review, J. Membr. Sci., 463 (2014) 145–165.
  17. J. Suhartono, C. Tizaoui, Polyvinylidene fluoride membranes impregnated at optimised content of pristine and functionalised multi-walled carbon nanotubes for improved water permeation, solute rejection and mechanical properties, Sep. Purif. Technol., 154 (2015) 290–300.
  18. H.A.A. El-Rehim, E.A. Hegazy, D.A. Diaa, Photo-catalytic degradation of metanil yellow dye using TiO2 immobilized into polyvinyl alcohol/acrylic acid microgels prepared by ionizing radiation, React. Funct. Polym., 72 (2012) 823–831.
  19. R. Thiruvenkatachari, T.O. Kwon, I.S. Moon, A total solution for simultaneous organic degradation and particle separation using photocatalytic oxidation and submerged microfiltration membrane hybrid process, Korean J. Chem. Eng., 22 (2005) 938–944.
  20. S. Lee, K. Choo, C. Lee, H. Lee, T. Hyeon, W. Choi, H. Kwon, Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment, Ind. Eng. Chem. Res., 40 (2001) 1712–1719.
  21. S. Kagaya, K. Shimizu, R. Arai, K. Hasegawa, Separation of titanium dioxide photocatalyst in its aqueous suspensions by coagulation with basic aluminium chloride, Water Res., 33 (1999) 1753–1755.
  22. H.T. Wang, Y.Y. Ye, J. Qi, F.T. Li, Y.L. Tang, Removal of titanium dioxide nanoparticles by coagulation: effects of coagulants, typical ions, alkalinity and natural organic matters, Water Sci. Technol., 68 (2013) 1137–1143.
  23. A. Patchaiyappan, S. Saran, S.P. Devipriya, Recovery and reuse of TiO2 photocatalyst from aqueous suspension using plant based coagulant – a green approach, Korean J. Chem. Eng., 33 (2016) 2107–2113.
  24. S. Mozia, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review, Sep. Purif. Technol., 73 (2010) 71–91.
  25. I.O. Uribe, A.M. Corral, J.L. Rodicio, S. Esplugas, Advanced technologies for water treatment and reuse, AlChE J. (Perspective), 61 (2015) 3146–3158.
  26. R. Damodar, S. You, G. Chiou, Investigation on the conditions mitigating membrane fouling caused by TiO2 deposition in a membrane photocatalytic reactor (MPR) used for dye wastewater treatment, J. Hazard. Mater., 203–204 (2012) 348–356.
  27. E. Garmsiri, Y. Rasouli, M. Abbasi, A.A. Izadpanah, Chemical cleaning of mullite ceramic micro filtration membranes which are fouled during oily wastewater treatment, J. Water Process Eng., 19 (2017) 81–95.
  28. X. Shi, G. Tal, N.P. Hankins, V. Gitis, Fouling and cleaning of ultrafiltration membranes: a review, J. Water Process Eng., 1 (2014) 121–138.
  29. S. Hajibabania, A. Antony, G. Leslie, P.L. Clech, Relative impact of fouling and cleaning on PVDF membrane hydraulic performances, Sep. Purif. Technol., 90 (2012) 204–212.
  30. J. Saqib, I.H. Aljundi, Membrane fouling and modification using surface treatment and layer-by-layer assembly of polyelectrolytes: state-of-the-art review, J. Water Process Eng., 11 (2016) 68–87.
  31. Z. Wang, J. Ma, C.Y. Tang, K. Kimura, Q. Wang, Membrane cleaning in membrane bioreactors: a review, J. Membr. Sci., 468 (2014) 276–307.
  32. C. Regula, E. Carretier, Y. Wyart, G.G. Guiziou, A. Vincent, D. Boudot, P. Moulin, Chemical cleaning/disinfection and ageing of organic UF membranes: a review, Water Res., 6 (2014) 326–365.
  33. W. Ding, M. Chen, M. Zhou, Z. Zhong, Z. Cui, W. Xing, Fouling behavior of poly(vinylidene fluoride) (PVDF) ultrafiltration membrane by polyvinyl alcohol (PVA) and chemical cleaning method, Chin. J. Chem. Eng., 28 (2020) 3018–3026.
  34. V. Puspitasari, A. Granville, P.L. Clech, V. Chen, Cleaning and ageing effect of sodium hypochlorite on polyvinylidene fluoride (PVDF) membrane, Sep. Purif. Technol., 72 (2010) 301–308.
  35. K. Li, S. Li, T. Huang, C. Dong, J. Li, B. Zhao, S. Zhang, Chemical cleaning of ultrafiltration membrane fouled by humic substances: comparison between hydrogen peroxide and sodium hypochlorite, Int. J. Environ. Res. Public Health, 16 (2019) 2568, doi: 10.3390/ijerph16142568.
  36. K.H. Tng, A. Antony, Y. Wang, G.L. Leslie, Chapter 11 – Membrane Ageing During Water Treatment: Mechanisms, Monitoring, and Control, A. Basile, A. Cassano, N.K. Rastogi, Eds., Advances in Membrane Technologies for Water Treatment: Materials, Processes and Applications, Woodhead Publishing Series in Energy, Elsevier Ltd., Sawston Cambridge, United Kingdom, 2015, pp. 349–378.
  37. M.R.S. Sousa, J. Lora-García, M.-F. López-Pérez, M. Heran, Identification of foulants on polyethersulfone membranes used to remove colloids and dissolved matter from paper mill treated effluent, Water, 12 (2020) 365, doi: 10.3390/w12020365.
  38. P. Xu, C. Bellona, J.E. Drewes, Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: membrane autopsy results from pilot-scale investigations, J. Membr. Sci., 353 (2010) 111–121.
  39. A. Boubakri, S. Bouguecha, Diagnostic and membrane autopsy of Djerba Island desalination station, Desalination, 220 (2008) 403–411.
  40. B. Agnihotri, A. Sharma, A.B. Gupta, Characterization and analysis of inorganic foulants in RO membranes for groundwater treatment, Desalination, 491 (2020) 114567, doi: 10.1016/j.desal.2020.114567.
  41. A.S. Al-Amoudi, A.M. Farooque, Performance restoration and autopsy of NF membranes used in seawater pretreatment, Desalination, 178 (2005) 261–271.
  42. T. Tran, B. Bolto, S. Gray, M. Hoang, E. Ostarcevic, An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant, Water Res., 41 (2007) 3915–3923.
  43. L. Zheng, D. Yu, G. Wang, Z. Yue, C. Zhang, Y. Wang, Characteristics and formation mechanism of membrane fouling in a full-scale RO wastewater reclamation process: membrane autopsy and fouling characterization, J. Membr. Sci., 563 (2018) 843–856.
  44. J. Jung, J. Ryu, S.Y. Choi, K.Y. Park, W.J. Song, Y.J. Yu, Y.-S. Jang, J. Park, J. Kweon, Autopsy study of irreversible foulants on polyvinylidene fluoride hollow-fiber membranes in an immersed microfiltration system operated for five years, Sep. Purif. Technol., 199 (2018) 1–8.
  45. M.T. Khan, Fouling of Seawater Reverse Osmosis (SWRO) Membrane: Chemical and Microbiological Characterization, Dissertation, King Abdullah University of Science & Technology (KAUST), Thuwal, Kingdom of Saudi Arabia, 2013.
  46. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, America, 2012.
  47. L. Rezaei, M. Dehghani, A.H. Hassani, V. Alipour, Seawater reverse osmosis membrane fouling causes in a full scale desalination plant; through the analysis of environmental issues: raw water quality, Environ. Health Eng. Manage. J., 7 (2020) 119–126.
  48. K.H. Lasisi, W. Yao, T.F. Ajibade, H. Tian, F. Fang, K. Zhang, Impacts of sulfuric acid on the stability and separation performance of polymeric PVDF-based membranes at mild and high concentrations: an experimental study, Membranes, 10 (2020) 375, doi: 10.3390/membranes10120375.
  49. Q. Wang, H. Zeng, Z. Wu, J. Cao, Impact of sodium hypochlorite cleaning on the surface properties and performance of PVDF membranes, Appl. Surf. Sci., 428 (2018) 289–295.
  50. R. Golbandi, M.A. Abdi, A.A. Babaluo, A.B. Khoshfetrat, T. Mohammadlou, Fouling study of TiO2 – boehmite MF membrane in defatting of whey solution: feed concentration and pH effects, J. Membr. Sci., 448 (2013) 135–142.
  51. A.S. Barnard, S.P. Russo, Shape and thermodynamic stability of pyrite FeS2 nanocrystals and nanorods, J. Phys. Chem., 111 (2007) 11742–11746.
  52. A. Larsson, The size and shape of silica particles, Colloid. Polym. Sci., 277 (1999) 680–686.
  53. M.R. Bindhu, M. Umadevi, M.K. Micheal, M. Valan, N.A. Al-dhabi, Structural, morphological and optical properties of MgO nanoparticles for antibacterial applications, Mater. Lett., 166 (2016) 19–22.
  54. J.G. Dunn, W. Gong, D. Shi, A Fourier transform infrared study of the oxidation of pyrite, Thermochim. Acta, 208 (1992) 293–303.
  55. P. Vermelha, R.D. Janeiro, Processing and characterization of PET composites reinforced with geopolymer concrete waste, Mater. Res., 20 (2017) 411–420.
  56. H. Chang, T. Li, B. Liu, C. Chen, Q. He, J.C. Crittenden, Smart ultrafiltration membrane fouling control as desalination pretreatment of shale gas fracturing wastewater: the effects of backwash water, Environ. Int., 130 (2019) 104869, doi: 10.1016/j. envint.2019.05.063.
  57. M. Sun, I. Zucker, D.M. Davenport, X. Zhou, J. Qu, M. Elimelech, Reactive, self-cleaning ultrafiltration membrane functionalized with iron oxychloride nanocatalysts, Environ. Sci. Technol., 52 (2018) 8674–8683.
  58. I. Kovács, G. Veréb, S. Kertész, C. Hodúr, Z. László, Fouling mitigation and cleanability of TiO2 photocatalyst-modified PVDF membranes during ultrafiltration of model oily wastewater with different salt contents, Environ. Sci. Pollut. Res., 25 (2018) 34912–34921.
  59. C. Wan, C.R. Bowen, Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure, J. Mater. Chem. A, 5 (2017) 3091–3128.
  60. M.F. Rabuni, N.M.N. Sulaiman, M.K. Aroua, N.A. Hashim, Effects of alkaline environments at mild conditions on the stability of PVDF membrane: an experimental study, Ind. Eng. Chem. Res., 52 (2013) 15874–15882.
  61. J. Meng, C. Chen, L. Huang, Q. Du, Y. Zhang, Surface modification of PVDF membrane via AGET ATRP directly from the membrane surface, Appl. Surf. Sci., 257 (2011) 6282–6290.
  62. C.H. Koo, A.W. Mohammad, F. Suja, Effect of cross-flow velocity on membrane filtration performance in relation to membrane properties, Desal. Water Treat., 55 (2014) 678–692.
  63. T. Xiao, P. Wang, X. Yang, X. Cai, J. Lu, Fabrication and characterization of novel asymmetric polyvinylidene fluoride (PVDF) membranes by the nonsolvent thermally induced phase separation (NTIPS) method for membrane distillation applications, J. Membr. Sci., 489 (2015) 160–174.
  64. Z. Arif, N.K. Sethy, L. Kumari, P.K. Mishra, B. Verma, Antifouling behaviour of PVDF/TiO2 composite membrane: a quantitative and qualitative assessment, Iran. Polym. J. (English Ed.), 28 (2019) 301–312.
  65. Y.H. Teow, A.L. Ahmad, J.K. Lim, B.S. Ooi, Preparation and characterization of PVDF/TiO2 mixed matrix membrane via in situ colloidal precipitation method, Desalination, 295 (2012) 61–69.
  66. L. Pisani, Simple expression for the tortuosity of porous media, Transp. Porous Media., 88 (2011) 193–203.
  67. M. Matyka, A. Khalili, Z. Koza, Tortuosity-porosity relation in porous media flow, P. Review E., 78 (2008) 1–8.
  68. H. Xie, T. Saito, M.A. Hickner, Zeta potential of ion-conductive membranes by streaming current measurements, Langmuir, 27 (2011) 4721–4727.
  69. J. Wang, S. Yang, W. Guo, H. Ngo, H. Jia, J. Yang, Characterization of fouling layers for in-line coagulation membrane fouling by apparent zeta, RSC Adv., 5 (2015) 106087–106093.
  70. Q. Wang, Z. Wang, Z. Wu, Effects of solvent compositions on physicochemical properties and anti-fouling ability of PVDF microfiltration membranes for wastewater treatment, Desalination, 297 (2012) 79–86.
  71. M.F. Rabuni, N.M.N. Sulaiman, N.A. Hashim, A systematic assessment method for the investigation of the PVDF membrane stability, Desal. Water Treat., 57 (2016) 1–12.
  72. E. Jigar, K. Bagi, Á. Fazekas, S. Kertész, G. Veréb, Filtration of BSA through TiO2 photocatalyst modified PVDF membranes, Desal. Water Treat., 192 (2020) 392–399.
  73. X. Shen, Y. Zhao, X. Feng, S. Bi, W. Ding, L. Chen, Improved antifouling properties of PVDF membranes modified with oppositely charged copolymer, Biofouling: The Journal of Bioadhesion and Biofilm, 29 (2013) 331–343.