References

  1. T. Leiknes, H. Ødegaard, Moving bed biofilm membrane reactor (MBB-MR): characteristics and potentials of a hybrid process design for compact wastewater treatment plants, Proc. Eng. Membr., 1 (2001) 52–57.
  2. A.H. Birima, Performance of Membrane Bioreactor in the Treatment of High Strength Municipal Wastewater, Ph.D Thesis, Universiti Putra Malaysia, 2008.
  3. D. Hendricks, Water Treatment Unit Processes: Physical and Chemical, CRC Press, USA, 2006.
  4. A.M. Deegan, B. Shaik, K. Nolan, K. Urell, M. Oelgemöller, J. Tobin, A. Morrissey, Treatment options for wastewater effluents from pharmaceutical companies, Int. J. Environ. Sci. Technol., 8 (2011) 649–666.
  5. N. Areerachakul, S. Vigneswaran, H.H. Ngo, J. Kandasamy, Granular activated carbon (GAC) adsorption-photocatalysis hybrid system in the removal of herbicide from water, Sep. Purif. Technol., 55 (2007) 206–211.
  6. E.A. El-Sharkawy, A.Y. Soliman, K.M. Al-Amer, Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation, J. Colloid Interface Sci., 310 (2007) 498–508.
  7. M.O. Awaleh, Y.D. Soubaneh, Waste water treatment in chemical industries: the concept and current technologies, Hydrol. Curr. Res., 5 (2014) 1–12, doi: 10.4172/2157-7587.1000164.
  8. M. Ajmal, R.A.K. Rao, R. Ahmad, M.A. Khan, Adsorption studies on Parthenium hysterophorous weed: removal and recovery of Cd(II) from wastewater, J. Hazard. Mater., 135 (2006) 242–248.
  9. J. Acharya, J.N. Sahu, C.R. Mohanty, B.C. Meikap, Removal of lead(II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation, Chem. Eng. J., 149 (2009) 249–262.
  10. S. Koutcheiko, C.M. Monreal, H. Kodama, T. McCracken, L. Kotlyar, Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure, Bioresour. Technol., 98 (2007) 2459–2464.
  11. K. Kadirvelu, K. Thamaraiselvi, C. Namasivayam, Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste, Bioresour. Technol., 76 (2001) 63–65.
  12. A.F. Hassan, H. Elhadidy, Production of activated carbons from waste carpets and its application in methylene blue adsorption: kinetic and thermodynamic studies, J. Environ. Chem. Eng., 5 (2017) 955–963.
  13. H. Deng, L. Yang, G. Tao, J. Dai, Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—application in methylene blue adsorption from aqueous solution, J. Hazard. Mater., 166 (2009) 1514–1521.
  14. W. Xing, H.H. Ngo, S.H. Kim, W.S. Guo, P. Hagare, Adsorption and bioadsorption of granular activated carbon (GAC) for dissolved organic carbon (DOC) removal in wastewater, Bioresour. Technol., 99 (2008) 8674–8678.
  15. R.L. Tseng, F.C. Wu, R.S. Juang, Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons, Carbon, 41 (2003) 487–495.
  16. A. Kumar, S. Kumar, S. Kumar, D.V. Gupta, Adsorption of phenol and 4-nitrophenol on granular activated carbon in basal salt medium: equilibrium and kinetics, J. Hazard. Mater., 147 (2007) 155–166.
  17. S. Nouri, F. Haghseresht, Adsorption of p-nitrophenol in untreated and treated activated carbon, Adsorption, 10 (2004) 79–86.
  18. F.C. Wu, R.L. Tseng, R.S. Juang, Comparisons of porous and adsorption properties of carbons activated by steam and KOH, J. Colloid Interface Sci., 283 (2005) 49–56.
  19. L. Deng, W. Guo, H.H. Ngo, X. Zhang, X.C. Wang, Q. Zhang, R. Chen, New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor–membrane bioreactor system, Bioresour. Technol., 208 (2016) 87–93.
  20. L. Deng, H.H. Ngo, W. Guo, H. Zhang, Pre-coagulation coupled with sponge-membrane filtration for organic matter removal and membrane fouling control during drinking water treatment, Water Res., 157 (2019) 155–166.
  21. P. Peng, H. Huang, H. Ren, H. Ma, Y. Lin, J. Geng, L. Ding, Exogenous N-acyl homoserine lactones facilitate microbial adhesion of high ammonia nitrogen wastewater on biocarrier surfaces, Sci. Total Environ., 624 (2018) 1013–1022.
  22. H.T. Nhut, N.T.Q. Hung, T.C. Sac, N.H.K. Bang, T.Q. Tri, N.T. Hiep, N.H.K. Bang, Removal of nutrients and organic pollutants from domestic wastewater treatment by sponge-based moving bed biofilm reactor, Environ. Eng. Res., 25 (2019) 652–658.
  23. W. Mook, M. Chakrabarti, M. Aroua, G. Khan, B. Ali, M. Islam, M.A. Hassan, Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: a review, Desalination, 285 (2012) 1–13.
  24. V.M. Monsalvo, A.F. Mohedano, J.J. Rodriguez, Activated carbons from sewage sludge: application to aqueous-phase adsorption of 4-chlorophenol, Desalination, 277 (2011) 377–382.
  25. S.R. Ha, S. Vinitnantharat, H. Ozaki, Bioregeneration by mixed microorganisms of granular activated carbon loaded with a mixture of phenols, Biotechnol. Lett., 22 (2009) 1093–1096.
  26. P. Sutton, P. Mishra, Activated carbon based biological fluidized beds for contaminated water and wastewater treatment: a stateof- the-art review, Water Sci. Technol., 29 (1994) 309–317.
  27. S.D. Joseph, M.C. Arbestain, Y. Lin, P. Munroe, C.H. Chia, J. Hook, J. Lehmann, An investigation into the reactions of biochar in soil, Soil Res., 48 (2010) 501–515.
  28. M. Katsikogianni, Y.F. Missirlis, Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions, Eur. Cell. Mater., 8 (2004) 37–57.
  29. F. Suja, T. Donnelly, Effect of full and partial-bed configuration on carbon removal performance of biological aerated filters, Water Sci. Technol., 58 (2008) 977–983.
  30. P. Pedros, J. Wang, H. Metghalchi, Single submerged attached growth bioreactor for simultaneous removal of organics and nitrogen, J. Environ. Eng., 133 (2007) 191–197.
  31. Y.T. Hameed, A. Idris, S.A. Hussain, N. Abdullah, H.C. Man, F. Suja, A tannin–based agent for coagulation and flocculation of municipal wastewater as a pretreatment for biofilm process, J. Cleaner Prod., 182 (2018) 198–205.
  32. D.P. Cassidy, E. Belia, Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge, Water Res., 39 (2005) 4817–4823.
  33. Y. Cao, C. Zhang, H. Rong, G. Zheng, L. Zhao, The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR), Water Res., 108 (2017) 86–94.
  34. S.R. Qasim, Wastewater Treatment Plants: Planning, Design, and Operation, CRC Press, 1998.
  35. Metcalf, Eddy, Wastewater Engineering: Treatment and Reuse, 4th ed., New York, 2003.
  36. J. Ha, Nitrogen and Phosphorous Removal in Biological Aerated Filters (BAFs), Ph.D Thesis, Iowa State University, Iowa, 2006.
  37. M.C. Chrispim, M.A. Nolasco, Greywater treatment using a moving bed biofilm reactor at a university campus in Brazil, J. Cleaner Prod., 142 (2017) 290–296.
  38. A. Valipour, S.M. Taghvaei, V.K. Raman, G.B. Gholikandi, S. Jamshidi, N. Hamnabard, An approach on attached growth process for domestic wastewater treatment, Environ. Eng. Manage. J., 13 (2014) 145–152.
  39. Y. Ammar, D. Swailes, B. Bridgens, J. Chen, Influence of surface roughness on the initial formation of biofilm, Surf. Coat. Technol., 284 (2015) 410–416.
  40. A.A.L. Zinatizadeh, E. Ghaytooli, Simultaneous nitrogen and carbon removal from wastewater at different operating conditions in a moving bed biofilm reactor (MBBR): process modeling and optimization, J. Taiwan Inst. Chem. Eng., 53 (2015) 98–111.
  41. X. Zhang, J. Li, Y. Yu, R. Xu, Z. Wu, Biofilm characteristics in natural ventilation trickling filters (NVTFs) for municipal wastewater treatment: comparison of three kinds of biofilm carriers, Biochem. Eng. J., 106 (2016) 87–96.
  42. S. Xia, J. Li, R. Wang, Nitrogen removal performance and microbial community structure dynamics response to carbon nitrogen ratio in a compact suspended carrier biofilm reactor, Ecol. Eng., 32 (2008) 256–262.
  43. S.A.E. Shafai, W.M. Zahid, Performance of aerated submerged biofilm reactor packed with local scoria for carbon and nitrogen removal from municipal wastewater, Bioresour. Technol., 143 (2013) 476–482.
  44. G. Andreottola, P. Foladori, M. Ragazzi, F. Tatàno, Experimental comparison between MBBR and activated sludge system for the treatment of municipal wastewater, Water Sci. Technol., 41 (2008) 375–382.
  45. M. Ahmed, A. Idris, A. Adam, Combined anaerobic-aerobic system for treatment of textile wastewater, J. Eng. Sci. Technol., 2 (2007) 55–69.
  46. M.F. Hamoda, R.A. Bin-Fahad, Nitrogen removal from wastewater in an anoxic–aerobic biofilm reactor, J. Water Reuse Desal., 2 (2012) 165–174.
  47. B. Zhao, M. Tian, Q. An, J. Ye, J.S. Guo, Characteristics of a heterotrophic nitrogen removal bacterium and its potential application on treatment of ammonium-rich wastewater, Bioresour. Technol., 226 (2017) 46–54.
  48. K. Boki, S. Tanada, T. Miyoshi, R. Yamasaki, N. Ohtani, T. Tamura, Phosphate removal by adsorption to activated carbon, Nippon Eiseigaku Zasshi, 42 (1987) 710–720.
  49. J. Yan, Y.Y. Hu, Partial nitrification to nitrite for treating ammonium-rich organic wastewater by immobilized biomass system, Bioresour. Technol., 100 (2009) 2341–2347.
  50. K. Shahot, I. Habib, A. Ekhmaj, Performance of a full-scale activated sludge process for Sakket (Musrata–Libya) municipal wastewater treatment plant, N. Y. Sci. J., 8 (2015) 34–37.
  51. D.J. Kim, D.I. Lee, J. Keller, Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH, Bioresour. Technol., 97 (2006) 459–468.