References

  1. F. Mashkoor, A. Nasar, Inamuddin, A.M. Asiri, Exploring the reusability of synthetically contaminated wastewater containing crystal violet dye using Tectona grandis sawdust as a very low-cost adsorbent, Sci. Rep., 8 (2018) 8314 (1–16), doi: 10.1038/s41598-018-26655-3.
  2. M.R. Islam, N.G. Das, P. Barua, M.B. Hossain, S. Venkatramanan, S.Y. Chung, Environmental assessment of water and soil contamination in Rajakhali Canal of Karnaphuli River (Bangladesh) impacted by anthropogenic influences: a preliminary case study, Appl. Water Sci., 7 (2017) 997–1010.
  3. M.J. Uddin, Y.K. Jeong, Urban river pollution in Bangladesh during last 40 years: potential public health and ecological risk, present policy, and future prospects toward smart water management, Heliyon, 7 (2021) e06107 (1–23), doi: 10.1016/j. heliyon.2021.e06107.
  4. M.Z. Bin Mukhlish, Y. Horie, T. Nomiyama, Flexible aluminasilica nanofibrous membrane and its high adaptability in reactive red-120 dye removal from water, Water Air Soil Pollut., 228 (2017) 371 (1–16), doi: 10.1007/s11270-017-3546-7.
  5. M. Imran, D.E. Crowley, A. Khalid, S. Hussain, M.W. Mumtaz, M. Arshad, Microbial biotechnology for decolorization of textile wastewaters, Rev. Environ. Sci. Biotechnol., 14 (2015) 73–92.
  6. M.S. Tsuboy, J.P.F. Angeli, M.S. Mantovani, S. Knasmüller, G.A. Umbuzeiro, L.R. Ribeiro, Genotoxic, mutagenic and cytotoxic effects of the commercial dye CI Disperse Blue 291 in the human hepatic cell line HepG2, Toxicol. In Vitro, 21 (2007) 1650–1655.
  7. M.R. Torres, C.G. Bouzán, M. Crespi, Combination of coagulation–flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents, Desalination, 252 (2010) 53–59.
  8. M.Z.B. Mukhlish, M.R. Khan, M.S. Islam, M.I. Nazir, J.S. Snigdha, R. Akter, H. Ahmad, Decolorization of reactive dyes from aqueous solution using combined coagulationflocculation and photochemical oxidation (UV/H₂O₂), Sustainable Chem. Eng., 1 (2020) 51–61.
  9. I. Friha, M. Bradai, D. Johnson, N. Hilal, S. Loukil, F.B. Amor, F. Feki, J. Han, H. Isoda, S. Sayadi, Treatment of textile wastewater by submerged membrane bioreactor: in vitro bioassays for the assessment of stress response elicited by raw and reclaimed wastewater, J. Environ. Manage., 160 (2015) 184–192.
  10. M.T. Uddin, M.A. Islam, S. Mahmud, M. Rukanuzzaman, Adsorptive removal of methylene blue by tea waste, J. Hazard. Mater., 164 (2009) 53–60.
  11. A. Rathi, S. Basu, S. Barman, Adsorptive removal of fipronil from its aqueous solution by modified zeolite HZSM-5: equilibrium, kinetic and thermodynamic study, J. Mol. Liq., 283 (2019) 867–878.
  12. A. Rathi, S. Basu, S. Barman, Structural framework effect of various CeO2-loaded zeolites on the adsorptive removal of fipronil, J. Environ. Chem. Eng., 9 (2021) 105167, doi: 10.1016/j. jece.2021.105167.
  13. A. Riga, K. Soutsas, K. Ntampegliotis, V. Karayannis, G. Papapolymerou, Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes, Desalination, 211 (2007) 72–86.
  14. S.S. Kalra, S. Mohan, A. Sinha, G. Singh, Advanced oxidation processes for treatment of textile and dye wastewater: a review, IPCBEE, 4 (2011) 271–275.
  15. B.N. Kumar, Y. Anjaneyulu, V. Himabindu, Comparative studies of degradation of dye intermediate (H-acid) using TiO2/UV/H2O2 and photo-Fenton process, J. Chem. Pharm. Res., 3 (2011) 718–731.
  16. A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications, Catalysts, 3 (2013) 189–218.
  17. S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review, Water Air Soil Pollut., 215 (2011) 3–29.
  18. S.N. Ahmed, W. Haider, Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review, Nanotechnology, 29 (2018) 342001 (1–30), doi: 10.1088/1361-6528/aac6ea.
  19. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37–38.
  20. C.G. Lee, H. Javed, D. Zhang, J.H. Kim, P. Westerhoff, Q. Li, P.J.J. Alvarez, Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants, Environ. Sci. Technol., 52 (2018) 4285–4293.
  21. D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu, R. Ruan, Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review, J. Cleaner Prod., 268 (2020) 1–14, doi: 10.1016/j.jclepro.2020.121725.
  22. Q. Sun, K. Li, S. Wu, B. Han, L. Sui, L. Dong, Remarkable improvement of TiO2 for dye photocatalytic degradation by a facile post-treatment, New J. Chem., 44 (2020) 1942–1952.
  23. M.Z.B. Mukhlish, F. Najnin, M.M. Rahman, M.J. Uddin, Photocatalytic degradation of different dyes using TiO2 with high surface area: a kinetic study, J. Sci. Res., 5 (2013) 301–314.
  24. A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 95 (1995) 735–758.
  25. N. Laid, N. Bouanimba, R. Zouaghi, T. Sehili, Comparative study on photocatalytic decolorization of an anionic and a cationic dye using different TiO2 photocatalysts, Desal. Water Treat., 57 (2016) 19357–19373.
  26. M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, M.M. Müller, H.J. Kleebe, K. Rachut, J. Ziegler, A. Klein, W. Jaegermann, Preparation of RuO2/TiO2 mesoporous heterostructures and rationalization of their enhanced photocatalytic properties by band alignment investigations, J. Phys. Chem. C, 117 (2013) 22098–22110.
  27. B. Barrocas, O.C. Monteiro, M.R. Nunes, A.J. Silvestre, Influence of Re and Ru doping on the structural, optical and photocatalytic properties of nanocrystalline TiO2, SN Appl. Sci., 1 (2019) 556, doi: 10.1007/s42452-019-0567-4.
  28. D. John, A.S. Rajalakshmi, R.M. Lopez, V.S. Achari, TiO2-reduced graphene oxide nanocomposites for the trace removal of diclofenac, SN Appl. Sci., 2 (2020) 840, doi: 10.1007/s42452-020-2662-y.
  29. K. Musaev, D. Mirkhamitova, A. Yarbekov, S. Nurmanov, K. Akbarov, O. Ruzimuradov, Facile synthesis of SiO2–TiO2 photocatalyst nanoparticles for degradation of phenolic water pollutants, SN Appl. Sci., 1 (2019) 1164, doi: 10.1007/s42452-019-1192-y.
  30. N. Shafeei, G. Asadollahfardi, G. Moussavi, M.M.A. Boojar, Degradation of ibuprofen in the photocatalytic process with doped TiO2 as catalyst and UVA-LED as existing source, Desal. Water Treat., 142 (2019) 341–352.
  31. S.B. Cherguı, H. Zemmourı, M. Chabanı, A. Bensmaılı, TiO2-photocatalyzed degradation of tetracycline: kinetic study, adsorption isotherms, mineralization and toxicity reduction, Desal. Water Treat., 57 (2016) 16670–16677.
  32. A. Wold, Photocatalytic properties of TiO2, Chem. Mater., 5 (1993) 280–283.
  33. M.T. Uddin, Y. Nicolas, C. Olivier, W. Jaegermann, N. Rockstroh, H. Junge, T. Toupance, Band alignment investigations of heterostructure NiO/TiO2 nanomaterials used as efficient heterojunction earth-abundant metal oxide photocatalysts for hydrogen production, Phys. Chem. Chem. Phys., 19 (2017) 19279–19288.
  34. J. Liu, Y. Li, J. Ke, S. Wang, L. Wang, H. Xiao, Black NiO-TiO2 nanorods for solar photocatalysis: recognition of electronic structure and reaction mechanism, Appl. Catal., B, 224 (2018) 705–714.
  35. K. Salehi, B. Shahmoradi, A. Bahmani, M. Pirsaheb, H.P. Shivaraju, Optimization of reactive black 5 degradation using hydrothermally synthesized NiO/TiO2 nanocomposite under natural sunlight irradiation, Desal. Water Treat., 57 (2016) 25256–25266.
  36. D. Toloman, O. Pana, M. Stefan, A. Popa, C. Leostean, S. Macavei, D. Silipas, I. Perhaita, M.D. Lazar, L.B. Tudoran, Photocatalytic activity of SnO2–TiO2 composite nanoparticles modified with PVP, J. Colloid Interface Sci., 542 (2019) 296–307.
  37. Talinungsang, N. Paul, D.D. Purkayastha, M.G. Krishna, TiO2/SnO2 and SnO2/TiO2 heterostructures as photocatalysts for degradation of stearic acid and methylene blue under UV irradiation, Superlattices Microstruct., 129 (2019) 105–114.
  38. M. Gholami, M.S. Siboni, M. Farzadkia, J.K. Yang, Synthesis, characterization, and application of ZnO/TiO2 nanocomposite for photocatalysis of a herbicide (Bentazon), Desal. Water Treat., 57 (2016) 13632–13644.
  39. M.T. Uddin, O. Babot, L. Thomas, C. Olivier, M. Redaelli, M.D. Arienzo, F. Morazzoni, W. Jaegermann, N. Rockstroh, H. Junge, T. Toupance, New insights into the photocatalytic properties of RuO2/TiO2 mesoporous heterostructures for hydrogen production and organic pollutant photodecomposition, J. Phys. Chem. C, 119 (2015) 7006–7015.
  40. W. Subramonian, T.Y. Wu, S.P. Chai, Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe2O3-TiO2: treatment efficiency and characterizations of reused photocatalyst, J. Environ. Manage., 187 (2017) 298–310.
  41. M. Nasirian, C.F.B. Lecompte, M. Mehrvar, Photocatalytic efficiency of Fe2O3/TiO2 for the degradation of typical dyes in textile industries: effects of calcination temperature and UV-assisted thermal synthesis, J. Environ. Manage., 196 (2017) 487–498.
  42. F. Asgharzadeh, M. Gholami, A.J. Jafari, M. Kermani, H. Asgharnia, R.R. Kalantary, Heterogeneous photocatalytic degradation of metronidazole from aqueous solutions using Fe3O4/TiO2 supported on biochar, Desal. Water Treat., 175 (2020) 304–315.
  43. N. Yaacob, A.F. Ismail, G.P. Sean, N.A.M. Nazri, Structural and photocatalytic properties of co-doped hybrid ZrO2–TiO2 photocatalysts, SN Appl. Sci., 1 (2019) 252, doi: 10.1007/ s42452-019-0247-4.
  44. W. Li, H. Ding, H. Ji, W. Dai, J. Guo, G. Du, Photocatalytic degradation of tetracycline hydrochloride via a CdS-TiO2 heterostructure composite under visible light irradiation, Nanomaterials, 8 (2018) 415 (1–12), doi: 10.3390/nano8060415.
  45. F.C. Chiu, C.M. Lai, Optical and electrical characterizations of cerium oxide thin films, J. Phys. D: Appl. Phys., 43 (2010) 075104 (1–5), doi: 10.1088/0022-3727/43/7/075104.
  46. M.F. Bekheet, M. Grünbacher, L. Schlicker, A. Gili, A. Doran, J.D. Epping, A. Gurlo, B. Klötzer, S. Penner, On the structural stability of crystalline ceria phases in undoped and acceptordoped ceria materials under in situ reduction conditions, CrystEngComm, 21 (2019) 145–154.
  47. H. Gao, B. Qiao, T.J. Wang, D. Wang, Y. Jin, Cerium oxide coating of titanium dioxide pigment to decrease its photocatalytic activity, Ind. Eng. Chem. Res., 53 (2014) 189–197.
  48. T. Seadira, G. Sadanandam, T.A. Ntho, X. Lu, C.M. Masuku, M. Scurrell, Hydrogen production from glycerol reforming: conventional and green production, Rev. Chem. Eng., 34 (2018) 695–726.
  49. S.A.A.R. Sayyed, N.I. Beedri, V.S. Kadam, H.M. Pathan, Rose bengal-sensitized nanocrystalline ceria photoanode for dyesensitized solar cell application, Bull. Mater. Sci., 39 (2016) 1381–1387.
  50. R. Saravanan, S. Joicy, V.K. Gupta, V. Narayanan, A. Stephen, Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts, Mater. Sci. Eng., C, 33 (2013) 4725–4731.
  51. M. Humayun, Z. Hu, A. Khan, W. Cheng, Y. Yuan, Z. Zheng, Q. Fu, W. Luo, Highly efficient degradation of 2,4-dichlorophenol over CeO2/g-C3N4 composites under visible-light irradiation: detailed reaction pathway and mechanism, J. Hazard. Mater., 364 (2019) 635–644.
  52. O. Ola, M.M.M. Valer, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction, J. Photochem. Photobiol., C, 24 (2015) 16–42.
  53. S. Ghasemi, S.R. Setayesh, A.H. Yangjeh, M.R.H. Nezhad, M.R. Gholami, Assembly of CeO2–TiO2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutants, J. Hazard. Mater., 199–200 (2012) 170–178.
  54. F. Chen, P. Ho, R. Ran, W. Chen, Z. Si, X. Wu, D. Weng, Z. Huang, C. Lee, Synergistic effect of CeO2 modified TiO2 photocatalyst on the enhancement of visible light photocatalytic performance, J. Alloys Compd., 714 (2017) 560–566.
  55. Z. Fan, F. Meng, J. Gong, H. Li, Y. Hu, D. Liu, Enhanced photocatalytic activity of hierarchical flower-like CeO2/TiO2 heterostructures, Mater. Lett., 175 (2016) 36–39.
  56. T.M. Wandre, P.N. Gaikwad, A.S. Tapase, K.M. Garadkar, S.A. Vanalakar, P.D. Lokhande, R. Sasikala, P.P. Hankare, Sol–gel synthesized TiO2–CeO2 nanocomposite: an efficient photocatalyst for degradation of methyl orange under sunlight, J. Mater. Sci. Mater. Electron., 27 (2016) 825–833.
  57. H. Yang, K. Zhang, R. Shi, A. Tang, Sol–gel synthesis and photocatalytic activity of CeO2/TiO2 nanocomposites, J. Am. Ceram. Soc., 90 (2007) 1370–1374.
  58. L. Feng, H. Wang, X. Han, Preparation and catalytic performance of the CeO2/TiO2 composites, Mater. Res. Innovations, 19 (2015) 111–113.
  59. M. Nasr, W. Huang, C. Bittencourt, D. Cui, Y. Sun, L. Wang, N.G. Caperaa, Y. Ning, P. Song, P. Bonnet, C. Wang, Synthesis of BiOF/TiO2 heterostructures and their enhanced visiblelight photocatalytic activity, Eur. J. Inorg. Chem., 2020 (2020) 253–260.
  60. W. Zhang, X. Sun, B. Chen, Photocatalytic degradation of methyl orange on iron niobate prepared by solid-state reaction, Adv. Mater. Res., 113–116 (2010) 2021–2024.
  61. J. Xing, Z. Shan, K. Li, J. Bian, X. Lin, W. Wang, F. Huang, Photocatalytic activity of Nb2O5/SrNb2O6 heterojunction on the degradation of methyl orange, J. Phys. Chem. Solids, 69 (2008) 23–28.
  62. P. Ren, H. Fan, X. Wang, Solid-state synthesis of Bi2O3/BaTiO3 heterostructure: preparation and photocatalytic degradation of methyl orange, Appl. Phys. A Mater. Sci. Process., 111 (2013) 1139–1145.
  63. A.A. Aziz, M.D.J. Ooi, M.J. Abdullah, The effects of oxygen-catalysed and heat treatment on the precipitation synthesised ZnO nanoparticles, J. Exp. Nanosci., 9 (2014) 27–40.
  64. B.M. Babić, S.K. Milonjić, M.J. Polovina, B.V. Kaludierović, Point of zero charge and intrinsic equilibrium constants of activated carbon cloth, Carbon, 37 (1999) 477–481.
  65. M.T. Uddin, M.E. Hoque, M.C. Bhoumick, Facile one-pot synthesis of heterostructure SnO2/ZnO photocatalyst for enhanced photocatalytic degradation of organic dye, RSC Adv., 10 (2020) 23554–23565.
  66. T. Sreethawong, Y. Yamada, T. Kobayashi, S. Yoshikawa, Catalysis of nanocrystalline mesoporous TiO2 on cyclohexene epoxidation with H2O2: effects of mesoporosity and metal oxide additives, J. Mol. Catal. A: Chem., 241 (2005) 23–32.
  67. B.M. Sollier, M. Bonne, N. Khenoussi, L. Michelin, E.E. Miró, L.E. Gómez, A. V. Boix, B. Lebeau, Synthesis and characterization of electrospun nanofibers of Sr–La–Ce oxides as catalysts for the oxidative coupling of methane, Ind. Eng. Chem. Res., 59 (2020) 11419–11430.
  68. H. Eskandarloo, A. Badiei, M.A. Behnajady, TiO2/CeO2 hybrid photocatalyst with enhanced photocatalytic activity: optimization of synthesis variables, Ind. Eng. Chem. Res., 53 (2014) 7847–7855.
  69. W. Promnopas, S. Promnopas, T. Phonkhokkong, T. Thongtem, D. Boonyawan, L. Yu, O. Wiranwetchayan, A. Phuruangrat, S. Thongtem, Crystalline phases and optical properties of titanium dioxide films deposited on glass substrates by microwave method, Surf. Coat. Technol., 306 (2016) 69–74.
  70. J.S. de Oliveira, M. Brondani, E.S. Mallmann, S.L. Jahn, E.L. Foletto, S. Silvestri, Preparation of highly efficient CoFe2O4/Zn2SnO4 composite photocatalyst for the degradation of rhodamine B dye from aqueous solution, Water Air Soil Pollut., 229 (2018) 386 (1–9), doi: 10.1007/s11270-018-4038-0.
  71. B.H. Chen, W. Liu, A. Li, Y.J. Liu, Z.S. Chao, A simple and convenient approach for preparing core-shell-like silica@ nickel species nanoparticles: highly efficient and stable catalyst for the dehydrogenation of 1,2-cyclohexanediol to catechol, Dalton Trans., 44 (2014) 1023–1038.
  72. C. Shifu, C. Lei, G. Shen, C. Gengyu, The preparation of coupled WO3/TiO2 photocatalyst by ball milling, Powder Technol., 160 (2005) 198–202.
  73. P. Kubelka, F. Munk, Ein Beitrag zur Optik der Farbanstriche, Z. Für Tech. Phys., 12 (1931) 593–601.
  74. R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study, J. Sol-Gel Sci. Technol., 61 (2012) 1–7.
  75. G. Kortüm, J. Vogel, Die theorie der diffusen reflexion von Licht an pulverförmigen stoffen, Z. Fur Phys. Chem., 18 (1958) 110–122.
  76. D.Y. Lee, J.T. Kim, J.H. Park, Y.H. Kim, I.K. Lee, M.H. Lee, B.Y. Kim, Effect of Er doping on optical band gap energy of TiO2 thin films prepared by spin coating, Curr. Appl. Phys., 13 (2013) 1301–1305.
  77. W. Zhang, N. Song, L.X. Guan, F. Li, M.M. Yao, Photocatalytic degradation of formaldehyde by nanostructured TiO2 composite films, J. Exp. Nanosci., 11 (2016) 185–196.
  78. M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M.M. Müller, H.J. Kleebe, J. Ziegler, W. Jaegermann, Nanostructured SnO2-ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes, Inorg. Chem., 51 (2012) 7764–7773.
  79. M.T. Uddin, Y. Nicolas, C. Olivier, L. Servant, T. Toupance, S. Li, A. Klein, W. Jaegermann, Improved photocatalytic activity in RuO2-ZnO nanoparticulate heterostructures due to inhomogeneous space charge effects, Phys. Chem. Chem. Phys., 17 (2015) 5090–5102.
  80. E.M. Mendoza, A.G. Nuñez-Briones, L.A.G. Cerda, R.D.P. Rodríguez, A.J.M. Luna, One-step synthesis of ZnO and Ag/ZnO heterostructures and their photocatalytic activity, Ceram. Int., 44 (2018) 6176–6180.
  81. M.A. Ahmed, E.E. El-Katori, Z.H. Gharni, Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol-gel method, J. Alloys Compd., 553 (2013) 19–29.
  82. J.T. Adeleke, T. Theivasanthi, M. Thiruppathi, M. Swaminathan, T. Akomolafe, A.B. Alabi, Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles, Appl. Surf. Sci., 455 (2018) 195–200.
  83. G.B. Vieira, H.J. José, M. Peterson, V.Z. Baldissarelli, P. Alvarez, R. de Fátima Peralta Muniz Moreira, CeO2/TiO2 nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension, J. Photochem. Photobiol., A, 353 (2018) 325–336.
  84. J.P.S. Valente, P.M. Padilha, A.O. Florentino, Studies on the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2, Chemosphere, 64 (2006) 1128–1133.
  85. D. Monga, D. Ilager, N.P. Shetti, S. Basu, T.M. Aminabhavi, 2D/2d heterojunction of MoS2/g-C3N4 nanoflowers for enhanced visible-light-driven photocatalytic and electrochemical degradation of organic pollutants, J. Environ. Manage., 274 (2020) 111208 (1–12), doi: 10.1016/j.jenvman.2020.111208.
  86. Aanchal, S. Barman, S. Basu, Complete removal of endocrine disrupting compound and toxic dye by visible light active porous g-C3N4/H-ZSM-5 nanocomposite, Chemosphere, 241 (2020) 1–10, doi: 10.1016/j.chemosphere.2019.124981.
  87. S. Kaneco, M.A. Rahman, T. Suzuki, H. Katsumata, K. Ohta, Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide, J. Photochem. Photobiol., A, 163 (2004) 419–424.
  88. X. Yong, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals, Am. Mineral., 85 (2000) 543–556.
  89. T. Andersen, H.K. Haugen, H. Hotop, Binding energies in atomic negative ions: III, J. Phys. Chem. Ref. Data, 28 (1999) 1511–1533.
  90. J.F. Liebman, Regularities and relations among ionization potentials of nontransition elements, J. Chem. Educ., 50 (1973) 831–834.
  91. M.G. Castaño, T.R. Reina, S. Ivanova, M.A. Centeno, J.A. Odriozola, Pt vs. Au in water-gas shift reaction, J. Catal., 314 (2014) 1–9.
  92. D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, S. Phanichphant, Photocatalytic degradation of methyl orange by CeO2 and Fe-doped CeO2 films under visible light irradiation, Sci. Rep., 4 (2014) 5757 (1–7), doi: 10.1038/srep05757.