References
- F. Mashkoor, A. Nasar, Inamuddin, A.M. Asiri, Exploring
the reusability of synthetically contaminated wastewater
containing crystal violet dye using Tectona grandis sawdust
as a very low-cost adsorbent, Sci. Rep., 8 (2018) 8314 (1–16),
doi: 10.1038/s41598-018-26655-3.
- M.R. Islam, N.G. Das, P. Barua, M.B. Hossain, S. Venkatramanan,
S.Y. Chung, Environmental assessment of water
and soil contamination in Rajakhali Canal of Karnaphuli
River (Bangladesh) impacted by anthropogenic influences:
a preliminary case study, Appl. Water Sci., 7 (2017) 997–1010.
- M.J. Uddin, Y.K. Jeong, Urban river pollution in Bangladesh
during last 40 years: potential public health and ecological
risk, present policy, and future prospects toward smart water
management, Heliyon, 7 (2021) e06107 (1–23), doi: 10.1016/j.
heliyon.2021.e06107.
- M.Z. Bin Mukhlish, Y. Horie, T. Nomiyama, Flexible aluminasilica
nanofibrous membrane and its high adaptability in
reactive red-120 dye removal from water, Water Air Soil
Pollut., 228 (2017) 371 (1–16), doi: 10.1007/s11270-017-3546-7.
- M. Imran, D.E. Crowley, A. Khalid, S. Hussain, M.W. Mumtaz,
M. Arshad, Microbial biotechnology for decolorization of
textile wastewaters, Rev. Environ. Sci. Biotechnol., 14 (2015)
73–92.
- M.S. Tsuboy, J.P.F. Angeli, M.S. Mantovani, S. Knasmüller,
G.A. Umbuzeiro, L.R. Ribeiro, Genotoxic, mutagenic and
cytotoxic effects of the commercial dye CI Disperse Blue 291 in
the human hepatic cell line HepG2, Toxicol. In Vitro, 21 (2007)
1650–1655.
- M.R. Torres, C.G. Bouzán, M. Crespi, Combination of
coagulation–flocculation and nanofiltration techniques for
dye removal and water reuse in textile effluents, Desalination,
252 (2010) 53–59.
- M.Z.B. Mukhlish, M.R. Khan, M.S. Islam, M.I. Nazir,
J.S. Snigdha, R. Akter, H. Ahmad, Decolorization of reactive
dyes from aqueous solution using combined coagulationflocculation
and photochemical oxidation (UV/H₂O₂),
Sustainable Chem. Eng., 1 (2020) 51–61.
- I. Friha, M. Bradai, D. Johnson, N. Hilal, S. Loukil, F.B. Amor,
F. Feki, J. Han, H. Isoda, S. Sayadi, Treatment of textile
wastewater by submerged membrane bioreactor: in vitro
bioassays for the assessment of stress response elicited by raw
and reclaimed wastewater, J. Environ. Manage., 160 (2015)
184–192.
- M.T. Uddin, M.A. Islam, S. Mahmud, M. Rukanuzzaman,
Adsorptive removal of methylene blue by tea waste, J. Hazard.
Mater., 164 (2009) 53–60.
- A. Rathi, S. Basu, S. Barman, Adsorptive removal of fipronil
from its aqueous solution by modified zeolite HZSM-5:
equilibrium, kinetic and thermodynamic study, J. Mol. Liq.,
283 (2019) 867–878.
- A. Rathi, S. Basu, S. Barman, Structural framework effect of
various CeO2-loaded zeolites on the adsorptive removal of
fipronil, J. Environ. Chem. Eng., 9 (2021) 105167, doi: 10.1016/j.
jece.2021.105167.
- A. Riga, K. Soutsas, K. Ntampegliotis, V. Karayannis,
G. Papapolymerou, Effect of system parameters and of inorganic
salts on the decolorization and degradation of Procion H-exl
dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV
and TiO2/UV/H2O2 processes, Desalination, 211 (2007) 72–86.
- S.S. Kalra, S. Mohan, A. Sinha, G. Singh, Advanced oxidation
processes for treatment of textile and dye wastewater: a review,
IPCBEE, 4 (2011) 271–275.
- B.N. Kumar, Y. Anjaneyulu, V. Himabindu, Comparative
studies of degradation of dye intermediate (H-acid) using TiO2/UV/H2O2 and photo-Fenton process, J. Chem. Pharm. Res.,
3 (2011) 718–731.
- A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis:
recent advances and applications, Catalysts, 3 (2013) 189–218.
- S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib,
Advances in heterogeneous photocatalytic degradation of
phenols and dyes in wastewater: a review, Water Air Soil
Pollut., 215 (2011) 3–29.
- S.N. Ahmed, W. Haider, Heterogeneous photocatalysis
and its potential applications in water and wastewater
treatment: a review, Nanotechnology, 29 (2018) 342001 (1–30),
doi: 10.1088/1361-6528/aac6ea.
- A. Fujishima, K. Honda, Electrochemical photolysis of water at
a semiconductor electrode, Nature, 238 (1972) 37–38.
- C.G. Lee, H. Javed, D. Zhang, J.H. Kim, P. Westerhoff, Q. Li,
P.J.J. Alvarez, Porous electrospun fibers embedding TiO2 for
adsorption and photocatalytic degradation of water pollutants,
Environ. Sci. Technol., 52 (2018) 4285–4293.
- D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo,
P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu, R. Ruan,
Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review, J. Cleaner Prod., 268 (2020)
1–14, doi: 10.1016/j.jclepro.2020.121725.
- Q. Sun, K. Li, S. Wu, B. Han, L. Sui, L. Dong, Remarkable
improvement of TiO2 for dye photocatalytic degradation by a
facile post-treatment, New J. Chem., 44 (2020) 1942–1952.
- M.Z.B. Mukhlish, F. Najnin, M.M. Rahman, M.J. Uddin,
Photocatalytic degradation of different dyes using TiO2
with high surface area: a kinetic study, J. Sci. Res., 5 (2013)
301–314.
- A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2
surfaces: principles, mechanisms, and selected results, Chem.
Rev., 95 (1995) 735–758.
- N. Laid, N. Bouanimba, R. Zouaghi, T. Sehili, Comparative
study on photocatalytic decolorization of an anionic and a
cationic dye using different TiO2 photocatalysts, Desal. Water
Treat., 57 (2016) 19357–19373.
- M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, M.M. Müller,
H.J. Kleebe, K. Rachut, J. Ziegler, A. Klein, W. Jaegermann,
Preparation of RuO2/TiO2 mesoporous heterostructures and
rationalization of their enhanced photocatalytic properties by
band alignment investigations, J. Phys. Chem. C, 117 (2013)
22098–22110.
- B. Barrocas, O.C. Monteiro, M.R. Nunes, A.J. Silvestre, Influence
of Re and Ru doping on the structural, optical and photocatalytic
properties of nanocrystalline TiO2, SN Appl. Sci., 1 (2019) 556,
doi: 10.1007/s42452-019-0567-4.
- D. John, A.S. Rajalakshmi, R.M. Lopez, V.S. Achari, TiO2-reduced graphene oxide nanocomposites for the trace
removal of diclofenac, SN Appl. Sci., 2 (2020) 840, doi: 10.1007/s42452-020-2662-y.
- K. Musaev, D. Mirkhamitova, A. Yarbekov, S. Nurmanov,
K. Akbarov, O. Ruzimuradov, Facile synthesis of SiO2–TiO2
photocatalyst
nanoparticles for degradation of phenolic
water pollutants, SN Appl. Sci., 1 (2019) 1164, doi: 10.1007/s42452-019-1192-y.
- N. Shafeei, G. Asadollahfardi, G. Moussavi, M.M.A. Boojar,
Degradation of ibuprofen in the photocatalytic process with
doped TiO2 as catalyst and UVA-LED as existing source, Desal.
Water Treat., 142 (2019) 341–352.
- S.B. Cherguı, H. Zemmourı, M. Chabanı, A. Bensmaılı, TiO2-photocatalyzed degradation of tetracycline: kinetic study,
adsorption isotherms, mineralization and toxicity reduction,
Desal. Water Treat., 57 (2016) 16670–16677.
- A. Wold, Photocatalytic properties of TiO2, Chem. Mater.,
5 (1993) 280–283.
- M.T. Uddin, Y. Nicolas, C. Olivier, W. Jaegermann, N. Rockstroh,
H. Junge, T. Toupance, Band alignment investigations of
heterostructure NiO/TiO2 nanomaterials used as efficient
heterojunction earth-abundant metal oxide photocatalysts for
hydrogen production, Phys. Chem. Chem. Phys., 19 (2017)
19279–19288.
- J. Liu, Y. Li, J. Ke, S. Wang, L. Wang, H. Xiao, Black NiO-TiO2
nanorods for solar photocatalysis: recognition of electronic
structure and reaction mechanism, Appl. Catal., B, 224 (2018)
705–714.
- K. Salehi, B. Shahmoradi, A. Bahmani, M. Pirsaheb,
H.P. Shivaraju, Optimization of reactive black 5 degradation
using hydrothermally synthesized NiO/TiO2 nanocomposite
under natural sunlight irradiation, Desal. Water Treat., 57 (2016)
25256–25266.
- D. Toloman, O. Pana, M. Stefan, A. Popa, C. Leostean, S. Macavei,
D. Silipas, I. Perhaita, M.D. Lazar, L.B. Tudoran, Photocatalytic
activity of SnO2–TiO2 composite nanoparticles modified with
PVP, J. Colloid Interface Sci., 542 (2019) 296–307.
- Talinungsang, N. Paul, D.D. Purkayastha, M.G. Krishna, TiO2/SnO2 and SnO2/TiO2 heterostructures as photocatalysts for
degradation of stearic acid and methylene blue under UV
irradiation, Superlattices Microstruct., 129 (2019) 105–114.
- M. Gholami, M.S. Siboni, M. Farzadkia, J.K. Yang, Synthesis,
characterization, and application of ZnO/TiO2 nanocomposite
for photocatalysis of a herbicide (Bentazon), Desal. Water Treat.,
57 (2016) 13632–13644.
- M.T. Uddin, O. Babot, L. Thomas, C. Olivier, M. Redaelli,
M.D. Arienzo, F. Morazzoni, W. Jaegermann, N. Rockstroh,
H. Junge, T. Toupance, New insights into the photocatalytic
properties of RuO2/TiO2 mesoporous heterostructures for
hydrogen production and organic pollutant photodecomposition,
J. Phys. Chem. C, 119 (2015) 7006–7015.
- W. Subramonian, T.Y. Wu, S.P. Chai, Photocatalytic degradation
of industrial pulp and paper mill effluent using synthesized
magnetic Fe2O3-TiO2: treatment efficiency and characterizations
of reused photocatalyst, J. Environ. Manage., 187 (2017) 298–310.
- M. Nasirian, C.F.B. Lecompte, M. Mehrvar, Photocatalytic
efficiency of Fe2O3/TiO2 for the degradation of typical dyes
in textile industries: effects of calcination temperature and
UV-assisted thermal synthesis, J. Environ. Manage., 196 (2017)
487–498.
- F. Asgharzadeh, M. Gholami, A.J. Jafari, M. Kermani,
H. Asgharnia, R.R. Kalantary, Heterogeneous photocatalytic
degradation of metronidazole from aqueous solutions using
Fe3O4/TiO2 supported on biochar, Desal. Water Treat., 175 (2020)
304–315.
- N. Yaacob, A.F. Ismail, G.P. Sean, N.A.M. Nazri, Structural
and photocatalytic properties of co-doped hybrid ZrO2–TiO2 photocatalysts, SN Appl. Sci., 1 (2019) 252, doi: 10.1007/
s42452-019-0247-4.
- W. Li, H. Ding, H. Ji, W. Dai, J. Guo, G. Du, Photocatalytic
degradation of tetracycline hydrochloride via a CdS-TiO2
heterostructure composite under visible light irradiation,
Nanomaterials, 8 (2018) 415 (1–12), doi: 10.3390/nano8060415.
- F.C. Chiu, C.M. Lai, Optical and electrical characterizations
of cerium oxide thin films, J. Phys. D: Appl. Phys., 43 (2010)
075104 (1–5), doi: 10.1088/0022-3727/43/7/075104.
- M.F. Bekheet, M. Grünbacher, L. Schlicker, A. Gili, A. Doran,
J.D. Epping, A. Gurlo, B. Klötzer, S. Penner, On the structural
stability of crystalline ceria phases in undoped and acceptordoped
ceria materials under in situ reduction conditions,
CrystEngComm, 21 (2019) 145–154.
- H. Gao, B. Qiao, T.J. Wang, D. Wang, Y. Jin, Cerium oxide coating
of titanium dioxide pigment to decrease its photocatalytic
activity, Ind. Eng. Chem. Res., 53 (2014) 189–197.
- T. Seadira, G. Sadanandam, T.A. Ntho, X. Lu, C.M. Masuku,
M. Scurrell, Hydrogen production from glycerol reforming:
conventional and green production, Rev. Chem. Eng., 34 (2018)
695–726.
- S.A.A.R. Sayyed, N.I. Beedri, V.S. Kadam, H.M. Pathan, Rose
bengal-sensitized nanocrystalline ceria photoanode for dyesensitized
solar cell application, Bull. Mater. Sci., 39 (2016)
1381–1387.
- R. Saravanan, S. Joicy, V.K. Gupta, V. Narayanan, A. Stephen,
Visible light induced degradation of methylene blue using
CeO2/V2O5 and CeO2/CuO catalysts, Mater. Sci. Eng., C,
33 (2013) 4725–4731.
- M. Humayun, Z. Hu, A. Khan, W. Cheng, Y. Yuan, Z. Zheng,
Q. Fu, W. Luo, Highly efficient degradation of 2,4-dichlorophenol
over CeO2/g-C3N4 composites under visible-light irradiation:
detailed reaction pathway and mechanism, J. Hazard. Mater.,
364 (2019) 635–644.
- O. Ola, M.M.M. Valer, Review of material design and reactor
engineering on TiO2 photocatalysis for CO2 reduction,
J. Photochem. Photobiol., C, 24 (2015) 16–42.
- S. Ghasemi, S.R. Setayesh, A.H. Yangjeh, M.R.H. Nezhad,
M.R. Gholami, Assembly of CeO2–TiO2 nanoparticles prepared
in room temperature ionic liquid on graphene nanosheets for
photocatalytic degradation of pollutants, J. Hazard. Mater.,
199–200 (2012) 170–178.
- F. Chen, P. Ho, R. Ran, W. Chen, Z. Si, X. Wu, D. Weng, Z. Huang,
C. Lee, Synergistic effect of CeO2 modified TiO2 photocatalyst
on the enhancement of visible light photocatalytic performance,
J. Alloys Compd., 714 (2017) 560–566.
- Z. Fan, F. Meng, J. Gong, H. Li, Y. Hu, D. Liu, Enhanced
photocatalytic activity of hierarchical flower-like CeO2/TiO2
heterostructures, Mater. Lett., 175 (2016) 36–39.
- T.M. Wandre, P.N. Gaikwad, A.S. Tapase, K.M. Garadkar,
S.A. Vanalakar, P.D. Lokhande, R. Sasikala, P.P. Hankare,
Sol–gel synthesized TiO2–CeO2 nanocomposite: an efficient
photocatalyst for degradation of methyl orange under sunlight,
J. Mater. Sci. Mater. Electron., 27 (2016) 825–833.
- H. Yang, K. Zhang, R. Shi, A. Tang, Sol–gel synthesis and
photocatalytic activity of CeO2/TiO2 nanocomposites, J. Am.
Ceram. Soc., 90 (2007) 1370–1374.
- L. Feng, H. Wang, X. Han, Preparation and catalytic performance
of the CeO2/TiO2 composites, Mater. Res. Innovations, 19 (2015)
111–113.
- M. Nasr, W. Huang, C. Bittencourt, D. Cui, Y. Sun, L. Wang,
N.G. Caperaa, Y. Ning, P. Song, P. Bonnet, C. Wang, Synthesis
of BiOF/TiO2 heterostructures and their enhanced visiblelight
photocatalytic activity, Eur. J. Inorg. Chem., 2020 (2020)
253–260.
- W. Zhang, X. Sun, B. Chen, Photocatalytic degradation of
methyl orange on iron niobate prepared by solid-state reaction,
Adv. Mater. Res., 113–116 (2010) 2021–2024.
- J. Xing, Z. Shan, K. Li, J. Bian, X. Lin, W. Wang, F. Huang,
Photocatalytic activity of Nb2O5/SrNb2O6 heterojunction on the
degradation of methyl orange, J. Phys. Chem. Solids, 69 (2008)
23–28.
- P. Ren, H. Fan, X. Wang, Solid-state synthesis of Bi2O3/BaTiO3
heterostructure: preparation and photocatalytic degradation of
methyl orange, Appl. Phys. A Mater. Sci. Process., 111 (2013)
1139–1145.
- A.A. Aziz, M.D.J. Ooi, M.J. Abdullah, The effects of oxygen-catalysed
and heat treatment on the precipitation synthesised
ZnO nanoparticles, J. Exp. Nanosci., 9 (2014) 27–40.
- B.M. Babić, S.K. Milonjić, M.J. Polovina, B.V. Kaludierović,
Point of zero charge and intrinsic equilibrium constants of
activated carbon cloth, Carbon, 37 (1999) 477–481.
- M.T. Uddin, M.E. Hoque, M.C. Bhoumick, Facile one-pot
synthesis of heterostructure SnO2/ZnO photocatalyst for
enhanced photocatalytic degradation of organic dye, RSC Adv.,
10 (2020) 23554–23565.
- T. Sreethawong, Y. Yamada, T. Kobayashi, S. Yoshikawa,
Catalysis of nanocrystalline mesoporous TiO2 on cyclohexene
epoxidation with H2O2: effects of mesoporosity and metal oxide
additives, J. Mol. Catal. A: Chem., 241 (2005) 23–32.
- B.M. Sollier, M. Bonne, N. Khenoussi, L. Michelin, E.E. Miró,
L.E. Gómez, A. V. Boix, B. Lebeau, Synthesis and characterization
of electrospun nanofibers of Sr–La–Ce oxides as catalysts for the
oxidative coupling of methane, Ind. Eng. Chem. Res., 59 (2020)
11419–11430.
- H. Eskandarloo, A. Badiei, M.A. Behnajady, TiO2/CeO2
hybrid photocatalyst with enhanced photocatalytic activity:
optimization of synthesis variables, Ind. Eng. Chem. Res.,
53 (2014) 7847–7855.
- W. Promnopas, S. Promnopas, T. Phonkhokkong, T. Thongtem,
D. Boonyawan, L. Yu, O. Wiranwetchayan, A. Phuruangrat,
S. Thongtem, Crystalline phases and optical properties of
titanium dioxide films deposited on glass substrates by
microwave method, Surf. Coat. Technol., 306 (2016) 69–74.
- J.S. de Oliveira, M. Brondani, E.S. Mallmann, S.L. Jahn,
E.L. Foletto, S. Silvestri, Preparation of highly efficient CoFe2O4/Zn2SnO4 composite photocatalyst for the degradation of
rhodamine B dye from aqueous solution, Water Air Soil Pollut.,
229 (2018) 386 (1–9), doi: 10.1007/s11270-018-4038-0.
- B.H. Chen, W. Liu, A. Li, Y.J. Liu, Z.S. Chao, A simple and
convenient approach for preparing core-shell-like silica@
nickel species nanoparticles: highly efficient and stable catalyst
for the dehydrogenation of 1,2-cyclohexanediol to catechol,
Dalton Trans., 44 (2014) 1023–1038.
- C. Shifu, C. Lei, G. Shen, C. Gengyu, The preparation of coupled
WO3/TiO2 photocatalyst by ball milling, Powder Technol.,
160 (2005) 198–202.
- P. Kubelka, F. Munk, Ein Beitrag zur Optik der Farbanstriche,
Z. Für Tech. Phys., 12 (1931) 593–601.
- R. López, R. Gómez, Band-gap energy estimation from diffuse
reflectance measurements on sol-gel and commercial TiO2:
a comparative study, J. Sol-Gel Sci. Technol., 61 (2012) 1–7.
- G. Kortüm, J. Vogel, Die theorie der diffusen reflexion von
Licht an pulverförmigen stoffen, Z. Fur Phys. Chem., 18 (1958)
110–122.
- D.Y. Lee, J.T. Kim, J.H. Park, Y.H. Kim, I.K. Lee, M.H. Lee,
B.Y. Kim, Effect of Er doping on optical band gap energy of TiO2
thin films prepared by spin coating, Curr. Appl. Phys., 13 (2013)
1301–1305.
- W. Zhang, N. Song, L.X. Guan, F. Li, M.M. Yao, Photocatalytic
degradation of formaldehyde by nanostructured TiO2 composite
films, J. Exp. Nanosci., 11 (2016) 185–196.
- M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant,
M.M. Müller, H.J. Kleebe, J. Ziegler, W. Jaegermann,
Nanostructured SnO2-ZnO heterojunction photocatalysts
showing enhanced photocatalytic activity for the degradation
of organic dyes, Inorg. Chem., 51 (2012) 7764–7773.
- M.T. Uddin, Y. Nicolas, C. Olivier, L. Servant, T. Toupance,
S. Li, A. Klein, W. Jaegermann, Improved photocatalytic
activity in RuO2-ZnO nanoparticulate heterostructures due to
inhomogeneous space charge effects, Phys. Chem. Chem. Phys.,
17 (2015) 5090–5102.
- E.M. Mendoza, A.G. Nuñez-Briones, L.A.G. Cerda,
R.D.P. Rodríguez, A.J.M. Luna, One-step synthesis of ZnO
and Ag/ZnO heterostructures and their photocatalytic activity,
Ceram. Int., 44 (2018) 6176–6180.
- M.A. Ahmed, E.E. El-Katori, Z.H. Gharni, Photocatalytic
degradation of methylene blue dye using Fe2O3/TiO2
nanoparticles prepared by sol-gel method, J. Alloys Compd.,
553 (2013) 19–29.
- J.T. Adeleke, T. Theivasanthi, M. Thiruppathi, M. Swaminathan,
T. Akomolafe, A.B. Alabi, Photocatalytic degradation of
methylene blue by ZnO/NiFe2O4 nanoparticles, Appl. Surf. Sci.,
455 (2018) 195–200.
- G.B. Vieira, H.J. José, M. Peterson, V.Z. Baldissarelli, P. Alvarez,
R. de Fátima Peralta Muniz Moreira, CeO2/TiO2 nanostructures
enhance adsorption and photocatalytic degradation of organic
compounds in aqueous suspension, J. Photochem. Photobiol.,
A, 353 (2018) 325–336.
- J.P.S. Valente, P.M. Padilha, A.O. Florentino, Studies on the
adsorption and kinetics of photodegradation of a model
compound for heterogeneous photocatalysis onto TiO2,
Chemosphere, 64 (2006) 1128–1133.
- D. Monga, D. Ilager, N.P. Shetti, S. Basu, T.M. Aminabhavi,
2D/2d heterojunction of MoS2/g-C3N4 nanoflowers for enhanced
visible-light-driven photocatalytic and electrochemical
degradation of organic pollutants, J. Environ. Manage.,
274 (2020) 111208 (1–12), doi: 10.1016/j.jenvman.2020.111208.
- Aanchal, S. Barman, S. Basu, Complete removal of endocrine
disrupting compound and toxic dye by visible light active
porous g-C3N4/H-ZSM-5 nanocomposite, Chemosphere,
241 (2020) 1–10, doi: 10.1016/j.chemosphere.2019.124981.
- S. Kaneco, M.A. Rahman, T. Suzuki, H. Katsumata, K. Ohta,
Optimization of solar photocatalytic degradation conditions
of bisphenol A in water using titanium dioxide, J. Photochem.
Photobiol., A, 163 (2004) 419–424.
- X. Yong, M.A.A. Schoonen, The absolute energy positions of
conduction and valence bands of selected semiconducting
minerals, Am. Mineral., 85 (2000) 543–556.
- T. Andersen, H.K. Haugen, H. Hotop, Binding energies in
atomic negative ions: III, J. Phys. Chem. Ref. Data, 28 (1999)
1511–1533.
- J.F. Liebman, Regularities and relations among ionization
potentials of nontransition elements, J. Chem. Educ., 50 (1973)
831–834.
- M.G. Castaño, T.R. Reina, S. Ivanova, M.A. Centeno,
J.A. Odriozola, Pt vs. Au in water-gas shift reaction, J. Catal.,
314 (2014) 1–9.
- D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun,
A. Nattestad, J. Chen, S. Phanichphant, Photocatalytic
degradation of methyl orange by CeO2 and Fe-doped CeO2
films under visible light irradiation, Sci. Rep., 4 (2014) 5757
(1–7), doi: 10.1038/srep05757.