References

  1. J. Llinares, Propuesta metodológica para la determinación de la huella ecológica en el sector hotelero. Aplicación para las islas Canarias (Methodological proposal for the determination of the ecological footprint in the hotel sector. Application for the Canary Islands), Tesis (Thesis), Universidad de Las Palmas de Gran Canaria (University of Las Palmas de Gran Canaria), 2015.
  2. B.P. Weidema, M. Thrane, P. Christensen, J. Schmidt, S. Løkke, Carbon footprint. A catalyst for life cycle assessment? J. Ind. Ecol., 12 (2008) 3–6.
  3. M. Lenzen, Double-counting in life cycle calculations, J. Ind. Ecol., 12 (2008) 583–599.
  4. F.A. Leon, A. Ramos, Analysis of high efficiency membrane pilot testing for membrane design optimization, Desal. Wat. Treat., 73 (2017) 208–214.
  5. J. Schallenberg-Rodriguez, J.M. Veza, A. Blanco-Marigorta, Energy efficiency and desalination in the Canary Islands, Renew. Sustain. Energy Rev., 40 (2014) 741–748.
  6. J. Kherjl, A. Mnif, I. Bejaoui, B. Humrouni, Study of the influence of operating parameters on boron removal by a reverse osmosis membrane, Desal. Wat. Treat., 56 (2015) 2653–2662.
  7. D.M. Davenport, A. Deshmukh, J.R. Werber, M. Elimelech, High-pressure reverse osmosis for energy-efficient hypersaline brine desalination: current status, design considerations, and research needs, Environ. Sci. Technol. Lett., 5 (2018) 467–475.
  8. S.K. Patel, C.L. Ritt, A. Deshmukh, Z. Wang, M. Qin, R. Epsztein, M. Elimelech, The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies, Energy Environ. Sci., 13 (2020) 1694–1710.
  9. C. Boo, R.K. Winton, K.M. Conway, N. Yin Yip, Membraneless and non-evaporative desalination of hypersaline brines by temperature swing solvent extraction, Environ. Sci. Technol. Lett., 6 (2019) 359–364.
  10. M. Finkbeiner, Carbon footprinting—opportunities and threats, Int. J. LCA, 14 (2009) 91–94.
  11. D. Attarde, M. Jain, P.K. Singh, S.K. Gupta, Energy-efficient seawater desalination and wastewater treatment using osmotically driven membrane processes, Desalination, 413 (2017) 86–100.
  12. A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energypowered desalination processes, Renew. Sustain. Energy Rev., 24 (2013) 343–356.
  13. L. Cucek, J.J. Klemes, Z. Kravanja, A review of footprint analysis tools for monitoring impacts on sustainability, J. Cleaner Prod., 34 (2012) 9–20.
  14. P. Cornejo, M. Santana, D. Hokanson, J.R. Mihelcic, Q. Zhang, Carbon footprint of water reuse and desalination: a review of greenhouse gas emissions and estimation tools, J. Water Reuse Desalin., 4 (2014) 238–252.
  15. E. Shrestha, S. Ahmad, W. Johnson, P. Shrestha, J.R. Batista, Carbon footprint of water conveyance versus desalination as alternatives to expand water supply, Desalination, 280 (2011) 33–43.
  16. T. Wiedmann, J. Minx, C.C. Pertova, A Definition of Carbon Footprint. In Ecological Economics Research Trends, Nova Science Publishers, Hauppauge, NY, USA, 2008, Chapter 1, pp. 1–11.
  17. Carbon Footprints in the Supply Chain: The Next Step for Business, The Carbon Trust, London, UK, 2006, Report No. CTC616.
  18. H.S. Matthews, C.L. Weber, C.T. Hendrickson, Estimating Carbon Footprints with Input-Output Models, In Proceedings of the International Input-Output Meeting on Managing the Environment, Seville, 2008, pp. 9–11.
  19. J. Minx, K. Scott, G. Peters, J. Barrett, An Analysis of Sweden‘s Carbon Footprint—A Report to WWF Sweden, 2008, WWF, Stockholm, Sweden.
  20. C.L. Weber, H.S. Matthews, Quantifying the global and distributional aspects of American household carbon footprint, Ecol. Econ., 66 (2008) 379–391.
  21. T. Wiedmann, R. Wood, M. Lenzen, J. Minx, D. Guan, J. Barrett, Development of an Embedded Carbon Emissions Indicator— Producing a Time Series of Input-Output Tables and Embedded Carbon Dioxide Emissions for the UK by Using a MRIO Data Optimisation System. Final Report to the Department for Environment, Food and Rural Affairs by Stockholm Environment Institute at the University of York and Centre for Integrated Sustainability Analysis at the University of Sydney; Project Ref.EV02033; Defra, London, UK, 2008.
  22. H.S. Matthews, C.T. Hendrickson, C.L. Weber, The importance of carbon footprint estimation boundaries, Environ. Sci. Technol., 42 (2008) 5839–5842.
  23. J. Minx, T. Wiedmann, J. Barrett, S. Suh, Methods Review to Support the PAS Process for the Calculation of Greenhouse Gas Emissions Embodied in Goods and Services. Report to the UK Department for Environment, Food and Rural Affairs by Stockholm Environment Institute at the University Of York and Department for Bio-Based Products at the University of Minnesota, Project Ref.: EV2074; Defra, London, UK, 2008.
  24. A. Carballo Penela, Utilidad de la huella ecológica y del carbono en el ámbito de la responsablidad social corporativa (RSC) y el ecoetiquetado de bienes y servicios (Usefulness of the ecological and carbon footprint in the field of corporate social responsibility (CSR) and the ecolabeling of goods and services), Spain, 2009. http://www.eumed.net/rev/delos/08
  25. Consejería de Medio Ambiente de la Junta de Andalucía (Ministry of the Environment of the Andalusian government), La huella ecológica de Andalucía, una herramienta para medir la sostenibilidad (The ecological footprint of Andalusia, a tool to measure sustainability), Spain, 2006.
  26. Ministerio de medio ambiente medio rural y marino (Ministry of the rural and marine environment), Análisis de la huella ecológica de España (Analysis of the ecological footprint of Spain), Spain, 2008.
  27. Anuario Energético de Canarias 2017 (Canary Islands Energy Yearbook 2017). Dirección General de Industria y Energía. Gobierno de Canarias (Directorate General for Industry and Energy. Canary Islands Government), Spain, 2017.