References

  1. H. Song, J. Shao, J. Wang, X. Zhong, The removal of natural organic matter with LiCl–TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis, Desalination, 344 (2014) 412–421.
  2. Q. Wu, G.E. Chen, W.G. Sun, Z.L. Xu, Y.F. Kong, X.P. Zheng, S.J. Xu, Bio-inspired GO-Ag/PVDF/F127 membrane with improved anti-fouling for natural organic matter (NOM) resistance, Chem. Eng. J., 313 (2017) 450–460.
  3. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339, doi: 10.1021/ ja01539a017.
  4. Y. Wang, Z. Mo, P. Zhang, C. Zhang, L. Han, R. Guo, H. Gou, X. Wei, R. Hu, Synthesis of flower-like TiO2 microsphere/graphene composite for removal of organic dye from water, Mater. Des., 99 (2016) 378–388.
  5. H.N. Lim, N.M. Huang, C.H. Loo, Facile preparation of graphene-based chitosan films: enhanced thermal, mechanical and antibacterial properties, J. Non-Cryst. Solids, 358 (2012) 525–530.
  6. R.V. Brade, S.A. Waghuley, Preparation and electrical conductivity of novel vanadate borate glass system containing graphene oxide, J. Non-Cryst. Solids, 376 (2013) 117–125.
  7. A. Bonanni, M. Pumera, High-resolution impedance spectroscopy for graphene characterization, Electrochem. Commun., 26 (2013) 52–54.
  8. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys., 81 (2009) 109–162, doi: 10.1103/RevModPhys.81.109.
  9. L. Shen, S. Xiong, Y. Wang, Graphene oxide incorporated thinfilm composite membranes for forward osmosis applications, Chem. Eng. Sci., 143 (2016) 194–205.
  10. X.J. Kang, J.M. Zhang, X.W. Sun, F.R. Zhang, Y.X. Zhang, One-pot synthesis of vanadium dioxide nanoflowers on graphene oxide, Ceram. Int., 42 (2016) 7883–7887.
  11. J. Munoz, R. Montes, M. Baeza, Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: characterization, architecture surface and bio-sensing, TrAC, Trends Anal. Chem., 97 (2017) 201–215.
  12. G.R. Ferbandez, M.C. Rodriguez, A. Arenillas, J.A. Menéndez, I. da Rodríguez-Pastor, I. Martin-Gullon, Determinant influence of the electrical conductivity versus surface area on the performance of graphene oxide-doped carbon xerogel supercapacitors, Carbon, 126 (2018) 456–463.
  13. J.C. Meyer, A.K. Geim, M.I. Katselson, K.S. Novoselov, D. Obergfell, S. Roth, C.Girit, A. Zettl, On the roughness of single- and bilayer graphene membranes, Solid State Commun., 143 (2007) 101–109.
  14. R.P. Bustamante, D.B. Morales, J.B. Martinez, I. Estrada-Guel, R. Martínez-Sánchez, Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying, J. Alloys Compd., 615 (2014) 5578–5582.
  15. O. Jankovsky, P. Simek, D. Sedminubky, S. Huber, M. Pumer, Z. Sofer, Towards highly electrically conductive and thermally insulating graphene nanocomposites: Al2O3 graphene, RSC Adv., 4 (2014) 7418–7424.
  16. M.S.A. Bhuyan, M.N. Uddin, M.M. Islam, F.A. Bipasha, S.S. Hossain, Synthesis of graphene, Int. Nano Lett., 6 (2016) 65–83.
  17. J.A. Prince, S. Bhuvana, V. Anbharasi, N. Ayyanar, K.V.K. Boodhoo, G. Singh, Ultra-wetting graphene-based PES ultrafiltration membrane – A novel approach for successful oil-water separation, Water Res., 103 (2016) 311–318.
  18. H. Ha, C.J. Ellison, Polymer/graphene oxide (GO) thermoset composites with GO as a crosslinker, Korean J. Chem. Eng., 35 (2018) 303–317.
  19. R. Kumar, A.F. Ismail, Fouling control on microfiltration/ ultrafiltration membranes: effects of morphology, hydrophilicity and charge, J. Appl. Polym. Sci., 132 (2015) 42042, (1–20) doi: 10.1002/app.42042.
  20. J. Zhang, Z. Xu, W. Mai, C. Min, B. Zhou, M. Shan, Y. Li, C. Yang, Z. Wang, X. Qian, Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized lowdimensional carbon nanomaterials, J. Mater. Chem. A, 1 (2013) 3101–3111.
  21. D. Han, L. Yan, W. Chen, W. Li, Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state, Carbohydr. Polym., 83 (2011) 653–658.
  22. D. Rana, K. Bag, S.N. Bhattacharyya, B.M. Mandai, Miscibility of poly(styrene-co-butyl acrylate) with poly(ethyl methacrylate): existence of both UCST and LCST, J. Polym. Sci., 38 (2000) 369–375.
  23. D. Rana, B.M. Mandal, S.N. Bhattacharyya, Analogue calorimetric studies of blends of poly(vinyl ester)s and polyacrylates, Macromolecules, 29 (1996) 1579–1583.
  24. D. Rana, B.M. Mandal, S.N. Bhattacharyya, Miscibility and phase diagrams of poly(phenyl acrylate) and poly(styrene-coacrylonitrile) blends, Polymer, 34 (1993) 1454–1459.
  25. C. Liao, P. Yu, J. Zhao, L. Wang, Y. Luo, Preparation and characterization of NaY/PVDF hybrid ultrafiltration membranes containing silver ions as antibacterial materials, Desalination, 272 (2011) 59–65.
  26. Y.H. Zhao, B.K. Zhu, L. Kong, Y.Y. Xu, Improving hydrophilicity and protein resistance of poly(vinylidene fluoride) membranes by blending with amphiphilic hyperbranched-star polymer, Langmuir, 23 (2007) 5779–5786.
  27. Y. Chang, Y.J. Shih, R.C. Ruaan, A. Higuchi, W.Y. Chen, J.Y. Lai, Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility, J. Membr. Sci., 309 (2008) 165–174.
  28. Y. Chen, Q. Deng, J. Xiao, H. Nie, L. Wu, W. Zhou, B. Huang, Controlled grafting from poly(vinylidene fluoride) microfiltration membranes via reverse atom transfer radical polymerization and antifouling properties, Polymer, 48 (2007) 7604–7613.
  29. M.A. Aroon, A.F. Ismail, T. Matsuura, M.M.M. Rahmati, Performance studies of mixed matrix membranes for gas separation: a review, Sep. Purif. Technol., 75 (2010) 229–242.
  30. X. Yang, H. Sun, A. Pal, Y. Bai, L. Shao, Biomimetic silicification on membrane surface for highly efficient treatments of both oil-in-water emulsion and protein wastewater, ACS Appl. Mater. Interfaces, 10 (2018) 29982–29991.
  31. X. Liu, H. Yuana, C. Wang, S. Zhang, L. Zhang, X. Liu, F. Liu, X. Zhub, S. Rohanic, C. Ching, J. Lu, A novel PVDF/PFSAg-GO ultrafiltration membrane with enhanced permeation and antifouling performances, Sep. Purif. Technol., 233 (2020) 116038 (1–12), doi: 10.1016/j.seppur.2019.116038.
  32. K.Z. Riahi, N. Sdiri, D.J. Ennigrou, K.H. Naifer, Investigations on electrical conductivity and dielectric properties of graphene oxide nanosheets synthetized from modified Hummer’s method, J. Mol. Struct., 1216 (2020) 128304 (1–9), doi: 10.1016/j. molstruc.2020.128304.
  33. E. Yang, H.E. Karahan, K. Goh, C.Y. Chuah, R. Wang, T.H. Bae, Scalable fabrication of graphene-based laminate membranes for liquid and gas separations by crosslinking-induced gelation and doctor-blade casting, Carbon,155 (2019) 129–137.
  34. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri,S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97 (2006) 187401–187404.
  35. M. HagosKahsay, N. Belachew, A. Tadesse, K. Basavaiah, Magnetite nanoparticle decorated reduced graphene oxide for adsorptive removal of crystal violet and antifungal activities, RSC Adv., 10 (2020) 34916–34927.
  36. N. Wang, J. Wang, J. Zhao, J. Wang, J. Pan, J. Huang, Synthesis of porous-carbon@reduced graphene oxide with superior electrochemical behaviors for lithium-sulfur batteries, J. Alloys Compd., 851 (2021) 156832 (1–10), doi: 10.1016/j. jallcom.2020.156832.
  37. C. Ma, J. Hu, W. Sun c, Z. Ma, W. Yang, L. Wang, Z. Ran, B. Zhao, Z. Zhang, H. Zhang, Graphene oxide-polyethylene glycol incorporated PVDF nanocomposite ultrafiltration membrane with enhanced hydrophilicity, permeability, and antifouling performance, Chemosphere, 253 (2020) 126649 (1–10), doi: 10.1016/j.chemosphere.2020.126649.
  38. A.M. Ismail, M.I. Mohammed, S.S. Fouad, Optical and structural properties of polyvinylidene fluoride (PVDF)/ reduced graphene oxide (RGO) nanocomposites, J. Mol. Struct., 1170 (2018) 51–59.
  39. M. Mertens, T.V. Dyck, C.V. Goethem, A.Y. Gebreyohannes, I.F.J. Vankelecom, Development of a polyvinylidenedifluoride membrane for nanofiltration, J. Membr. Sci., 557 (2018) 24–29.
  40. H.H. Chang, L.K. Chang, C.D. Yang, D.J. Lin, L.P. Cheng, Effect of polar rotation on the formation of porous poly(vinylidene fluoride) membranes by immersion precipitation in an alcohol bath, J. Membr. Sci., 513 (2016) 186–196.
  41. M. Tao, F. Liu, B. Ma, L. Xue, Effect of solvent power on PVDF membrane polymorphism during phase inversion, Desalination, 316 (2013) 137–145.
  42. Z. Zhu, L. Wang, Y. Xu, Q. Li, J. Jiang, X. Wang, Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection, J. Colloid Interface Sci., 504 (2017) 429–439.
  43. R. Gregorio, Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions, J. Appl. Polym. Sci., 100 (2006) 3272–3279.
  44. M.C. Branciforti, V. Sencadas, S.L. Mendez, R. Gregorio, New technique of processing highly oriented poly(vinylidene fluoride) films exclusively in the β phase, J. Polym. Sci., Part B: Polym. Phys., 45 (2007) 2793–2801.
  45. H. Yu, L. Gu, S. Wu, G. Dong, X. Qiao, K. Zhang, X. Lu, H. Wen, D. Zhang, Hydrothermal carbon nanospheres assisted-fabrication of PVDF ultrafiltration membranes with improved hydrophilicity and antifouling performance, Sep. Purif. Technol., 247 (2020) 116889 (1–11), doi: 10.1016/j. seppur.2020.116889.
  46. K.J. Nakanishi, Infrared adsorption spectroscopy, practical, Holden-Day, 79 (1962) 392.