References
- M. Šiljeg, L. Foglar, M. Kukučka, The ground water ammonium
sorption onto Croatian and Serbian clinoptilolite, J. Hazard.
Mater., 178 (2010) 572–577.
- J. Ma, Y. Shi, X. Chen, H.X. Wang, Nitrogen load from rural
non-point source pollution in suburb area of Shenyang: a case
study of Damintun town, Adv. Mater. Res., 610–613 (2012)
3277–3281.
- C. Li, Batch and Bench-Scale Fixed-Bed Column Evaluations of
Heavy Metal Removals From Aqueous Solutions and Synthetic
Landfill Leachate Using Low-Cost Natural Adsorbents, Queen’s
University, Kingston ON, 2008.
- H.A. Aziz, M.S. Yusoff, M.N. Adlan, N.H. Adnan, S. Alias,
Physico-chemical removal of iron from semi-aerobic landfill
leachate by limestone filter, Waste Manage., 24 (2004) 353–358.
- L. Huang, F. Liu, Y. Yang, X. Kong, Y. Zhang, Ammoniumnitrogen
contaminated groundwater remediation by a
sequential three-zone permeable reactive barrier with oxygenreleasing
compound (ORC)/clinoptilolite/spongy iron: column
studies, Environ. Sci. Pollut. Res., 22 (2015) 3705–3714.
- M.A. Rahi, A.A.H. Faisal, Performance of subsurface flow
constructed wetland systems in the treatment of Al-Rustumia
municipal wastewater using continuous loading feed, Iraqi J.
Chem. Pet. Eng., 20 (2019) 33–40.
- M.A. Rahi, A.A.H. Faisal, L.A. Naji, S.A. Almuktar, S.N. Abed,
M. Scholz, Biochemical performance modelling of nonvegetated
and vegetated vertical subsurface-flow constructed
wetlands treating municipal wastewater in hot and dry
climate, J. Water Process Eng., 33 (2020) 101003, doi: 10.1016/
j.jwpe.2019.101003.
- B.J. Bedah, A.A.H. Faisal, Use of vertical subsurface
flow constructed wetland for reclamation of wastewater
contaminated with Congo red dye, Plant Arch., 20 (2020)
8784–8792.
- M. Wei, F. Harnisch, C. Vogt, J. Ahlheim, T. Neu, H. Richnow,
Harvesting electricity from benzene and ammoniumcontaminated
groundwater using a microbial fuel cell with an
aerated cathode, RSC Adv., 5 (2015) 5321–5330.
- Y. Wang, S. Liu, Z. Xu, T. Han, S. Chuan, T. Zhu, Ammonia
removal from leachate solution using natural Chinese
clinoptilolite, J. Hazard. Mater., 136 (2006) 735–740.
- C. Della Rocca, V. Belgiorno, S. Meriç, Overview of in-situ
applicable nitrate removal processes, Desalination, 204 (2007)
46–62.
- R. Thiruvenkatachari, S. Vigneswaran, R. Naidu, Permeable
reactive barrier for groundwater remediation, J. Ind. Eng.
Chem., 14 (2008) 145–156.
- A.D. Henderson, A.H. Demond, Long-term performance
of zero-valent iron permeable reactive barriers: a critical
review, Environ. Eng. Sci., 24 (2007) 401–423.
- M.I. Aguilar, J. Sáez, M. Lloréns, A. Soler, J.F. Ortuño, Nutrient
removal and sludge production in the coagulation–flocculation
process, Water Res., 36 (2002) 2910–2919.
- T. Van Nooten, L. Diels, L. Bastiaens, Design of a multifunctional
permeable reactive barrier for the treatment of landfill leachate
contamination: laboratory column evaluation, Environ. Sci.
Technol., 42 (2008) 8890–8895.
- H. Huang, X. Xiao, B. Yan, L. Yang, Ammonium removal from
aqueous solutions by using natural Chinese (Chende) zeolite as
adsorbent, J. Hazard. Mater., 175 (2010) 247–252.
- S. Ahsan, S. Kaneco, K. Ohta, T. Mizuno, K. Kani, Use of some
natural and waste materials for waste water treatment, Water
Res., 35 (2001) 3738–3742.
- M. Sarioglu, Removal of ammonium from municipal wastewater
using natural Turkish (Dogantepe) zeolite, Sep. Purif.
Technol., 41 (2005) 1–11.
- M. Naushad, Z.A. Alothman, M.R. Awual, M.M. Alam,
G.E. Eldesoky, Adsorption kinetics, isotherms, and
thermodynamic studies for the adsorption of Pb2+ and Hg2+
metal ions from aqueous medium using Ti(IV) iodovanadate
cation exchanger, Ionics, 21 (2015) 2237–2245.
- M. Naushad, A. Mittal, M. Rathore, V. Gupta, Ion-exchange
kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal
ions over a composite cation exchanger, Desal. Water Treat.,
54 (2015) 2883–2890.
- M. Naushad, Z.A. Alothman, Separation of toxic Pb2+ metal
from aqueous solution using strongly acidic cation-exchange
resin: analytical applications for the removal of metal ions
from pharmaceutical formulation, Desal. Water Treat., 53 (2015)
2158–2166.
- M. Naushad, Surfactant assisted nano-composite cation
exchanger: development, characterization and applications for
the removal of toxic Pb2+ from aqueous medium, Chem. Eng. J.,
235 (2014) 100–108.
- S. Muthusaravanan, N. Sivarajasekar, J.S. Vivek, T. Paramasivan,
M. Naushad, J. Prakashmaran, V. Gayathri, O.K. Al-Duaij,
Phytoremediation of heavy metals: mechanisms, methods
and enhancements, Environ. Chem. Lett., 16 (2018) 1339–1359.
- G. Sharma, D. Pathania, M. Naushad, N.C. Kothiyal, Fabrication,
characterization and antimicrobial activity of polyaniline
Th(IV) tungstomolybdophosphate nanocomposite material:
Efficient removal of toxic metal ions from water, Chem. Eng. J.,
251 (2014) 413–421.
- G. Sharma, M. Naushad, Adsorptive removal of noxious
cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: isotherm and kinetic modelling,
J. Mol. Liq., 310 (2020) 113025, doi: 10.1016/j.molliq.2020.113025.
- A.H. Sulaymon, A.A.H. Faisal, Q.M. Khaliefa, Cement kiln dust
(CKD)-filter sand permeable reactive barrier for the removal of
Cu(II) and Zn(II) from simulated acidic groundwater, J. Hazard.
Mater., 297 (2015) 160–172.
- A.A.H. Faisal, Effect of pH on the performance of olive
pips reactive barrier through the migration of coppercontaminated
groundwater, Desal. Water Treat., 57 (2016)
4935–4943.
- A.A.H. Faisal, Z.S. Nassir, L.A. Naji, M. Naushad, T. Ahamad,
A sustainable approach to utilize olive pips for the sorption
of lead ions: numerical modeling with aid of artificial neural
network, Sustainable Chem. Pharm., 15 (2020) 100220,
doi: 10.1016/j.scp.2020.100220.
- M.H. Rashid, A.H.A. Faisal, Removal of dissolved cadmium
ions from contaminated wastewater using raw scrap zerovalent
iron and zero valent aluminum as locally available and
inexpensive sorbent wastes, Iraqi J. Chem. Pet. Eng., 19 (2018)
39–45.
- H. Rashid, A. Faisal, Removal of dissolved trivalent chromium
ions from contaminated wastewater using locally available raw
scrap iron-aluminum waste, Al-Khwarizmi Eng. J., 15 (2019)
134–143.
- P.E.F. Oliveira, L.D. Oliveira, J.D. Ardisson, R.M. Lago, Potential
of modified iron-rich foundry waste for environmental
applications: Fenton reaction and Cr(VI) reduction, J. Hazard.
Mater., 194 (2011) 393–398.
- H. Zheng, D. Liu, Y. Zheng, S. Liang, Z. Liu, Sorption isotherm
and kinetic modeling of aniline on Cr-bentonite, J. Hazard.
Mater., 167 (2009) 141–147.
- A.A.H. Faisal, I.M. Ali, L.A. Naji, H.M. Madhloom,
N. Al-Ansari, Using different materials as permeable reactive
barrier for remediation of groundwater contaminated with
landfill’s leachate, Desal. Water Treat., 175 (2020) 152–163.
- A.A.H. Faisal, S.F.A. Al-Wakel, H.A. Assi, L.A. Naji,
M. Naushad, Waterworks sludge-filter sand permeable reactive
barrier for removal of toxic lead ions from contaminated
groundwater, J. Water Process Eng., 33 (2020) 101112,
doi: 10.1016/j.jwpe.2019.101112.
- D.N. Ahmed, L.A. Naji, A.A.H. Faisal, N. Al-Ansari,
M. Naushad, Waste foundry sand/MgFe-layered double
hydroxides composite material for efficient removal of Congo
red dye from aqueous solution, Sci. Rep., 10 (2020) 2042,
doi: 10.1038/s41598-020-58866-y.
- K. Balasubramani, N. Sivarajasekar, M. Naushad, Effective
adsorption of antidiabetic pharmaceutical (metformin)
from aqueous medium using graphene oxide nanoparticles:
Equilibrium and statistical modelling, J. Mol. Liq., 301 (2020)
112426, doi: 10.1016/j.molliq.2019.112426.
- M. Gheju, A. Miulescu, Sorption equilibrium of hexavalent
chromium on granular activated carbon, Chem. Bull.
Polytehnica Univ., 52 (2007) 1–2.
- K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption
isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
- G.P. Jeppu, T.P. Clement, A modified Langmuir–Freundlich
isotherm model for simulating pH-dependent adsorption
effects, J. Contam. Hydrol., 129–130 (2012) 46–53.
- L.K. Wang, Y.T. Hung, S.T.L. Tay, J.H. Tay, Environmental
Bioengineering, Part of the Handbook of Environmental
Engineering Book Series, Vol. 11, Springer, Totowa, New Jersey,
ISBN 978-1-58829-493-7, 2010.
- W. Weber, J. Morris, Advances in Water Pollution Research:
Removal of Biologically Resistant Pollutant from Waste Water
by Adsorption, Proceedings of the International Conference
on Water Pollution Symposium, Oxford, Pergamon, 1962,
pp. 231–266.
- F.-C. Wu, R.-L. Tseng, R.-S. Juang, Comparisons of porous
and adsorption properties of carbons activated by steam and
KOH, J. Colloid Interface Sci., 283 (2005) 49–56.
- R. Siddiquea, G. Kaur, A. Rajor, Waste foundry sand and its
leachate characteristics, Resour. Conserv. Recycl., 54 (2010)
1027–1036.
- N. Moraci, S. Bilardi, P.S. Calabrò, Critical aspects related to
Fe0 and Fe0/pumice PRB design, Environ. Geotech., 3 (2016)
114–124.
- G.O. El-Sayed, H.A. Dessouki, S.S. Ibrahim, Bio-sorption of
Ni(II) and Cd(II) ions from aqueous solutions onto rice straw,
Chem. Sci. J., 9 (2010) 1–11.
- A.A.H. Faisal, Z.A. Hmood, Groundwater protection from
cadmium contamination by zeolite permeable reactive
barrier, Desal. Water Treat., 53 (2015) 1377–1386.
- I. Campos, J. Álvarez, P. Villar, A. Pascual, L. Herrero, Foundry
sands as low-cost adsorbent material for Cr(VI) removal,
Environ. Technol., 34 (2013) 1267–1281.
- B.M.W.P.K. Amarasinghe, R.A. Williams, Tea waste as a low
cost adsorbent for the removal of Cu and Pb from wastewater,
Chem. Eng. J., 132 (2007) 299–309.
- D.C.K. Ko, J.F. Porter, G. McKay, Optimised correlations for the
fixed-bed adsorption of metal ions on bone char, Chem. Eng.
Sci., 55 (2000) 5819–5829.
- K.Y. Foo, L.K. Lee, B.H. Hameed, Preparation of tamarind fruit
seed activated carbon by microwave heating for the adsorptive
treatment of landfill leachate: a laboratory column evaluation,
Bioresour. Technol., 133 (2013) 599–605.
- S. Bilardi, P.S. Calabrò, N. Moraci, The removal efficiency and
long-term hydraulic behaviour of zero valent iron/lapillus
mixtures for the simultaneous removal of Cu2+, Ni2+ and Zn2+,
Sci. Total Environ., 675 (2019) 490–500.