References
- R. Rostamian, H. Behnejad, A comparative adsorption study
of sulfamethoxazole onto graphene and graphene oxide
nanosheets through equilibrium, kinetic and thermodynamic
modeling, Process Saf. Environ. Prot., 102 (2016) 20–29.
- R. Diyanati, J. Yazdani, Effect of sorbitol on phenol removal
rate by Lemna minor, J. Mazandaran Univ. Med. Sci., 22 (2013)
58–65.
- D. Balarak, F.K. Mostafapour, Photocatalytic degradation of
amoxicillin using UV/synthesized NiO from pharmaceutical
wastewater, Indonesian J. Chem., 19 (2019) 211–218.
- Y.X. Song, S. Chen, N. You, H.T. Fan, L.N. Sun,
Nanocomposites of zero valent iron-activated carbon derived
from corn stalk for adsorptive removal of tetracycline
antibiotics, Chemosphere, 225 (2020) 1–10, doi: 10.1016/j.
chemosphere.2020.126917.
- S. Ahmadi, A. Banach, F.K. Mostafapour, Study survey
of cupric oxide nanoparticles in removal efficiency of
ciprofloxacin antibiotic from aqueous solution: adsorption
isotherm study, Desal. Water Treat., 89 (2017) 297–303.
- P. Rajiv, N. Mengelizadeh, G. McKay, Photocatalytic degradation
of ciprofloxacin with Fe2O3 nanoparticles loaded on graphitic
carbon nitride: mineralisation, degradation mechanism and
toxicity assessment, Int. J. Environ. Anal. Chem., (2021),
doi: 10.1080/03067319.2021.1890059.
- D. Balarak, H. Azarpira, F.K. Mostafapour, Adsorption isotherm
studies of tetracycline antibiotics from aqueous solutions by
maize stalks as a cheap biosorbent, Int. J. Pharm. Technol.,
8 (2016) 16664–16675.
- A.H. Mahvi, F.K. Mostafapour, Biosorption of tetracycline
from aqueous solution by Azolla filiculoides: equilibrium
kinetic and thermodynamics studies, Fresenius Environ. Bull.,
27 (2018) 5759–5767.
- Z. Zhang, H. Li, H. Liu, Insight into the adsorption of
tetracycline onto amino and amino-Fe3+ functionalized
mesoporous silica: effect of functionalized groups, J. Environ.
Sci., 65 (2018) 171–178.
- J.M. Lv, Y.L. Ma, X. Chang, S.B. Fan, Removal and removing
mechanism of tetracycline residue from aqueous solution by
using Cu-13X, Chem. Eng. J., 273 (2015) 247–253.
- J. Cao, Z. Xiong, B. Lai, Effect of initial pH on the tetracycline
(TC) removal by zero-valent iron: adsorption, oxidation and
reduction, Chem. Eng. J., 343 (2018) 492–499.
- R. Acosta, V. Fierro, A.M. Yuso, D. Nabarlatz, A. Celzard,
Tetracycline adsorption onto activated carbons produced by
KOH activation of tyre pyrolysis char, Chemosphere, 149 (2016)
168–176.
- A.C. Martins, O. Pezoti, A.L. Cazetta, K.C. Bedin,
D.A.S. Yamazaki, Removal of tetracycline by NaOH-activated
carbon produced from macadamia nut shells: kinetic and
equilibrium studies, Chem. Eng. J., 260 (2015) 291–299.
- T.J. Al-Musawi, A.H. Mahvi, A.D. Khatibi, Effective adsorption
of ciprofloxacin antibiotic using powdered activated carbon
magnetized by iron(III) oxide magnetic nanoparticles, J. Porous
Mater., 28 (2021) 835–852.
- N. You, S. Chen, Y. Wang, H.T. Fan, L.N. Sun, T. Sun,
In situ sampling of tetracycline antibiotics in culture
wastewater using diffusive gradients in thin films equipped
with graphene nanoplatelets, Environ. Res., 191 (2020) 1–9,
doi: 10.1016/j.envres.2020.110089.
- D. Balarak, F.K. Mostafapour, E. Bazrafshan, A.S. Tawfik,
Studies on the adsorption of amoxicillin on multi-wall carbon
nanotubes, Water Sci. Technol., 75 (2017) 1599–1606.
- O.K. Kuyumcu, S.S. Bayazit, M.A. Salam, Antibiotic amoxicillin
removal from aqueous solution using magnetically modified
graphene nanoplatelets, J. Ind. Eng. Chem., 35 (2016) 225–234.
- N. You, H. Yao, Y. Wang, H.T. Fan, C.S. Wang, T. Sun,
Development and evaluation of diffusive gradients in thin
films based on nano-sized zinc oxide particles for the in situ
sampling of tetracyclines in pig breeding wastewater, Sci. Total
Environ., 651 (2019) 1653–1660.
- D. Balarak, A.H. Mahvi, M.J. Shim, S.M. Lee, Adsorption of
ciprofloxacin from aqueous solution onto synthesized NiO:
isotherm, kinetic and thermodynamic studies, Desal. Water
Treat., 212 (2021) 390–400.
- H.R. Pouretedal, N. Sadegh, Effective removal of amoxicillin,
cephalexin, tetracycline and penicillin G from aqueous
solutions using activated carbon nanoparticles prepared from
vine wood, J. Water Process Eng., 1 (2014) 64–73.
- S.J. Zou, B.H. Ding, Y.F. Chen, H.T. Fan, Nanocomposites
of graphene and zirconia for adsorption of organic-arsenic
drugs: performances comparison and analysis of adsorption
behavior, Environ. Res., 101 (2021) 1–12, doi: 10.1016/j.
envres.2021.110752.
- S.T. Danalıoğlu, S.S. Bayazit, O.K. Kuyumcu, M.A. Salam,
Efficient removal of antibiotics by a novel magnetic adsorbent:
magnetic activated carbon/chitosan (MACC) nanocomposite,
J. Mol. Liq., 240 (2017) 589–596.
- L. Huang, M. Wang, C. Shi, J. Huang, B. Zhang, Adsorption of
tetracycline and ciprofloxacin on activated carbon prepared
from lignin with H3PO4 activation, Desal. Water Treat., 52 (2014)
2678–2687.
- L. Madikizela, N. Tavengwa, V. Pakade, Molecularly Imprinted
Polymers for Pharmaceutical Compounds: Synthetic
Procedures and Analytical Applications, N. Cankaya, Ed.,
Recent Research in Polymerization, IntechOpen, 2018,
pp. 1–22. Available at: https://www.intechopen.com/books/
recent-research-in-polymerization/molecularly-imprintedpolymers-
for-pharmaceutical-compounds-syntheticprocedures-
and-analytical-appl
- W. Lu, J. Liu, J. Li, X. Wang, M. Lv, R. Cui, L. Chen, Dual-template
molecularly imprinted polymers for dispersive solid-phase
extraction of fluoroquinolones in water samples coupled with
high performance liquid chromatography, Analyst, 144 (2019)
1292–1302.
- X. Sun, J. Wang, Y. Li, J. Yang, J. Jin, S.M. Shah, J. Chen,
Novel dummy molecularly imprinted polymers for matrix
solid-phase dispersion extraction of eight fluoroquinolones
from fish samples, J. Chromatogr. A, 1359 (2014) 1–7.
- L.F. Miranda, D.S. Domingues, M.E. Queiroz, Selective solidphase
extraction using molecularly imprinted polymers
for analysis of venlafaxine, odesmethylvenlafaxine, and
N-desmethylvenlafaxine in plasma samples by liquid
chromatography-tandem mass spectrometry, J. Chromatogr. A,
1458 (2016) 46–53.
- C. Cacho, E. Turiel, C.P. Conde, Molecularly imprinted
polymers: an analytical tool for the determination of
benzimidazole compounds in water samples, Talanta, 78 (2009)
1029–1035.
- R.R. Pupin, M.V. Foguel, L.M. Gonçalves, M.P.T. Sotomayor,
Magnetic molecularly imprinted polymers obtained by
photopolymerization for selective recognition of penicillin G,
J. Appl. Polym. Sci., 137 (2019) 1–10.
- D.A. Spivak, Optimization, evaluation, and characterization
of molecularly imprinted polymers, Adv. Drug Deliv. Rev.,
57 (2005) 1779–1794.
- P.A. Cormack, A.Z. Elorza, Molecularly imprinted polymers:
synthesis and characterisation, J. Chromatogr. B, 804 (2004)
173–182.
- Z. Meng, W. Chen, A. Mulchandani, Removal of estrogenic
pollutants from contaminated water using molecularly
imprinted polymers, Environ. Sci. Technol., 39 (2005) 8958–8962.
- M. Li, D. Shu, L. Jiang, Cu(II)-influenced adsorption of
ciprofloxacin from aqueous solutions by magnetic graphene
oxide/nitrilotriacetic acid nanocomposite: competition and
enhancement mechanisms, Chem. Eng. J., 319 (2017) 219–228.
- H. Peng, B. Pan, M. Wu, Y. Liu, D. Zhang, B. Xing, Adsorption of
ofloxacin and norfloxacin on carbon nanotubes: hydrophobicity
and structure-controlled process, J. Hazard. Mater., 233–234
(2012) 89–96.
- Y. Lin, S. Xu, L. Jia, Fast and highly efficient tetracyclines
removal from environmental waters by graphene oxide
functionalized magnetic particles, Chem. Eng. J., 225 (2013)
679–685.
- G. Li, D. Zhang, M. Wang, J. Huang, L. Huang, Preparation of
activated carbons from Iris tectorum employing ferric nitrate
as dopant for removal of tetracycline from aqueous solutions,
Ecotoxicol. Environ. Saf., 98 (2013) 273–282.
- F. Güzel, H. Sayğılı, Adsorptive efficacy analysis of novel
carbonaceous sorbent derived from grape industrial processing
wastes towards tetracycline in aqueous solution, J. Taiwan Inst.
Chem., 60 (2016) 236–240.
- Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su,
Adsorption and removal of tetracycline antibiotics from
aqueous solution by graphene oxide, J. Colloid Interface Sci.,
368 (2012) 540–546.
- L. Ji, W. Chen, L. Duan, D. Zhu, Mechanisms for strong
adsorption of tetracycline to carbon nanotubes: a comparative
study using activated carbon and graphite as adsorbents,
Environ. Sci. Technol., 43 (2018) 2322–2327.
- J.R. Utrilla, C.V.G. Pacheco, M.S. Polo, J.J.L. Peñalver, R.O. Pérez,
Tetracycline removal from water by adsorption/bioadsorption
on activated carbons and sludge-derived adsorbents, J. Environ.
Manage., 131 (2013) 16–24.
- Z. Li, P.H. Chang, J.S. Jean, W.T. Jiang, C.J. Wang, Interaction
between tetracycline and smectite in aqueous solution,
J. Colloid Interface Sci., 341 (2010) 311–319.
- N. You, X.F. Wang, J.Y. Li, H.T. Fan, H. Shen, Q. Zhang,
Synergistic removal of arsanilic acid using adsorption and
magnetic separation technique based on Fe3O4@graphene
nanocomposite, J. Ind. Eng. Chem., 70 (2019) 346–354.
- Z. Li, L. Schulz, C. Ackley, N. Fenske, Adsorption of tetracycline
on kaolinite with pH-dependent surface charges, J. Colloid
Interface Sci., 351 (2010) 254–260.
- P.H. Chang, Z. Li, W.T. Jiang, J.S. Jean, Adsorption and
intercalation of tetracycline by clay minerals, Appl. Clay Sci.,
46 (2009) 27–36.
- P.H. Chang, Z. Li, T.L. Yu, S. Munkhbayer, T.H. Kuo, Y.C. Hung,
J.S. Jean, Sorptive removal of tetracycline from water by
palygorskite, J. Hazard. Mater., 165 (2009) 148–155.
- M.H. Marshal, M. Esmaieli, H. Abolghasemi, M.H. Marzbali,
Tetracycline adsorption by H3PO4-activated carbon produced
from apricot nut shells: a batch study, Process Saf. Environ.
Prot., 102 (2016) 700–709.
- M.B. Ahmed, J.L. Zhou, H.H. Ngo, Adsorptive removal of
antibiotics from water and wastewater: progress and challenges,
Sci. Total Environ., 532 (2015) 259–268.
- Y. Zhang, Z. Jiao, Y. Hu, S. Lv, H. Fan, Y. Zeng, Removal of
tetracycline and oxytetracycline from water by magnetic Fe3O4
graphene, Environ. Sci. Pollut. Res., 15 (2016) 1–9.
- X. Ren, C. Chen, M. Nagatsu, X. Wang, Carbon nanotubes as
adsorbents in environmental pollution management: a review,
Chem. Eng. J., 170 (2011) 395–410.
- L. Ji, Y. Shao, Z. Xu, S. Zheng, D. Zhu, Adsorption of
monoaromatic compounds and pharmaceutical antibiotics
on carbon nanotubes activated by KOH etching, Environ. Sci.
Technol., 44 (2010) 6429–6436.
- D. Balarak, H. Azarpira, F.K. Mostafapour, Study of the
adsorption mechanisms of cephalexin on to Azolla filiculoides,
Pharm. Chem., 8 (2016) 114–121.
- S. Li, X. Zhang, Y. Huang, Zeolitic imidazolate framework-8
derived nanoporous carbon as an effective and recyclable
adsorbent for removal of ciprofloxacin antibiotics from water,
J. Hazard. Mater., 321 (2017) 711–719.
- N. You, Y.X. Song, H.R. Wang, L.X. Kang, H.T. Fan, Sol–gel
derived Benzo–Crown ether-functionalized silica gel for
selective adsorption of Ca2+ ions, J. Chem. Eng. Data, 64 (2019)
1378–1384.
- F. Wang, B. Yang, H. Wang, Q. Song, F. Tan, Y. Cao, Removal
of ciprofloxacin from aqueous solution by a magnetic chitosan
grafted graphene oxide composite, J. Mol. Liq., 222 (2016)
188–194.
- S.X. Zha, Y. Zhou, X. Jin, Z. Chen, The removal of amoxicillin
from wastewater using organobentonite, J. Environ. Manage.,
129 (2013) 569–576.
- U.A. Guler, M. Sarioglu, Removal of tetracycline from
wastewater using pumice stone: equilibrium, kinetic and
thermodynamic studies, J. Environ. Health. Sci. Eng., 12 (2014)
79–87.
- H. Azarpira, Y. Mahdavi, O. Khaleghi, Thermodynamic studies
on the removal of metronidazole antibiotic by multi-walled
carbon nanotubes, Pharm. Lett., 8 (2016) 107–113.
- F. Yu, Y. Li, S. Han, Adsorptive removal of antibiotics from
aqueous solution using carbon materials, Chemosphere,
153 (2016) 365–385.
- D. Balarak, G. McKay, Utilization of MWCNTs/Al2O3 as
adsorbent for ciprofloxacin removal: equilibrium, kinetics and
thermodynamic studies, J. Environ. Sci. Health, Part A: Toxic/
Hazard. Subst. Environ. Eng., 56 (2021) 324–333.
- D. Balarak, Z. Taheri, M.J. Shim, S.M. Lee, C. Jeon, Adsorption
kinetics and thermodynamics and equilibrium of ibuprofen
from aqueous solutions by activated carbon prepared from
Lemna minor, Desal. Water Treat., 215 (2021) 183–193.