References

  1. R. Rostamian, H. Behnejad, A comparative adsorption study of sulfamethoxazole onto graphene and graphene oxide nanosheets through equilibrium, kinetic and thermodynamic modeling, Process Saf. Environ. Prot., 102 (2016) 20–29.
  2. R. Diyanati, J. Yazdani, Effect of sorbitol on phenol removal rate by Lemna minor, J. Mazandaran Univ. Med. Sci., 22 (2013) 58–65.
  3. D. Balarak, F.K. Mostafapour, Photocatalytic degradation of amoxicillin using UV/synthesized NiO from pharmaceutical wastewater, Indonesian J. Chem., 19 (2019) 211–218.
  4. Y.X. Song, S. Chen, N. You, H.T. Fan, L.N. Sun, Nanocomposites of zero valent iron-activated carbon derived from corn stalk for adsorptive removal of tetracycline antibiotics, Chemosphere, 225 (2020) 1–10, doi: 10.1016/j. chemosphere.2020.126917.
  5. S. Ahmadi, A. Banach, F.K. Mostafapour, Study survey of cupric oxide nanoparticles in removal efficiency of ciprofloxacin antibiotic from aqueous solution: adsorption isotherm study, Desal. Water Treat., 89 (2017) 297–303.
  6. P. Rajiv, N. Mengelizadeh, G. McKay, Photocatalytic degradation of ciprofloxacin with Fe2O3 nanoparticles loaded on graphitic carbon nitride: mineralisation, degradation mechanism and toxicity assessment, Int. J. Environ. Anal. Chem., (2021), doi: 10.1080/03067319.2021.1890059.
  7. D. Balarak, H. Azarpira, F.K. Mostafapour, Adsorption isotherm studies of tetracycline antibiotics from aqueous solutions by maize stalks as a cheap biosorbent, Int. J. Pharm. Technol., 8 (2016) 16664–16675.
  8. A.H. Mahvi, F.K. Mostafapour, Biosorption of tetracycline from aqueous solution by Azolla filiculoides: equilibrium kinetic and thermodynamics studies, Fresenius Environ. Bull., 27 (2018) 5759–5767.
  9. Z. Zhang, H. Li, H. Liu, Insight into the adsorption of tetracycline onto amino and amino-Fe3+ functionalized mesoporous silica: effect of functionalized groups, J. Environ. Sci., 65 (2018) 171–178.
  10. J.M. Lv, Y.L. Ma, X. Chang, S.B. Fan, Removal and removing mechanism of tetracycline residue from aqueous solution by using Cu-13X, Chem. Eng. J., 273 (2015) 247–253.
  11. J. Cao, Z. Xiong, B. Lai, Effect of initial pH on the tetracycline (TC) removal by zero-valent iron: adsorption, oxidation and reduction, Chem. Eng. J., 343 (2018) 492–499.
  12. R. Acosta, V. Fierro, A.M. Yuso, D. Nabarlatz, A. Celzard, Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char, Chemosphere, 149 (2016) 168–176.
  13. A.C. Martins, O. Pezoti, A.L. Cazetta, K.C. Bedin, D.A.S. Yamazaki, Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies, Chem. Eng. J., 260 (2015) 291–299.
  14. T.J. Al-Musawi, A.H. Mahvi, A.D. Khatibi, Effective adsorption of ciprofloxacin antibiotic using powdered activated carbon magnetized by iron(III) oxide magnetic nanoparticles, J. Porous Mater., 28 (2021) 835–852.
  15. N. You, S. Chen, Y. Wang, H.T. Fan, L.N. Sun, T. Sun, In situ sampling of tetracycline antibiotics in culture wastewater using diffusive gradients in thin films equipped with graphene nanoplatelets, Environ. Res., 191 (2020) 1–9, doi: 10.1016/j.envres.2020.110089.
  16. D. Balarak, F.K. Mostafapour, E. Bazrafshan, A.S. Tawfik, Studies on the adsorption of amoxicillin on multi-wall carbon nanotubes, Water Sci. Technol., 75 (2017) 1599–1606.
  17. O.K. Kuyumcu, S.S. Bayazit, M.A. Salam, Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets, J. Ind. Eng. Chem., 35 (2016) 225–234.
  18. N. You, H. Yao, Y. Wang, H.T. Fan, C.S. Wang, T. Sun, Development and evaluation of diffusive gradients in thin films based on nano-sized zinc oxide particles for the in situ sampling of tetracyclines in pig breeding wastewater, Sci. Total Environ., 651 (2019) 1653–1660.
  19. D. Balarak, A.H. Mahvi, M.J. Shim, S.M. Lee, Adsorption of ciprofloxacin from aqueous solution onto synthesized NiO: isotherm, kinetic and thermodynamic studies, Desal. Water Treat., 212 (2021) 390–400.
  20. H.R. Pouretedal, N. Sadegh, Effective removal of amoxicillin, cephalexin, tetracycline and penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood, J. Water Process Eng., 1 (2014) 64–73.
  21. S.J. Zou, B.H. Ding, Y.F. Chen, H.T. Fan, Nanocomposites of graphene and zirconia for adsorption of organic-arsenic drugs: performances comparison and analysis of adsorption behavior, Environ. Res., 101 (2021) 1–12, doi: 10.1016/j. envres.2021.110752.
  22. S.T. Danalıoğlu, S.S. Bayazit, O.K. Kuyumcu, M.A. Salam, Efficient removal of antibiotics by a novel magnetic adsorbent: magnetic activated carbon/chitosan (MACC) nanocomposite, J. Mol. Liq., 240 (2017) 589–596.
  23. L. Huang, M. Wang, C. Shi, J. Huang, B. Zhang, Adsorption of tetracycline and ciprofloxacin on activated carbon prepared from lignin with H3PO4 activation, Desal. Water Treat., 52 (2014) 2678–2687.
  24. L. Madikizela, N. Tavengwa, V. Pakade, Molecularly Imprinted Polymers for Pharmaceutical Compounds: Synthetic Procedures and Analytical Applications, N. Cankaya, Ed., Recent Research in Polymerization, IntechOpen, 2018, pp. 1–22. Available at: https://www.intechopen.com/books/ recent-research-in-polymerization/molecularly-imprintedpolymers- for-pharmaceutical-compounds-syntheticprocedures- and-analytical-appl
  25. W. Lu, J. Liu, J. Li, X. Wang, M. Lv, R. Cui, L. Chen, Dual-template molecularly imprinted polymers for dispersive solid-phase extraction of fluoroquinolones in water samples coupled with high performance liquid chromatography, Analyst, 144 (2019) 1292–1302.
  26. X. Sun, J. Wang, Y. Li, J. Yang, J. Jin, S.M. Shah, J. Chen, Novel dummy molecularly imprinted polymers for matrix solid-phase dispersion extraction of eight fluoroquinolones from fish samples, J. Chromatogr. A, 1359 (2014) 1–7.
  27. L.F. Miranda, D.S. Domingues, M.E. Queiroz, Selective solidphase extraction using molecularly imprinted polymers for analysis of venlafaxine, odesmethylvenlafaxine, and N-desmethylvenlafaxine in plasma samples by liquid chromatography-tandem mass spectrometry, J. Chromatogr. A, 1458 (2016) 46–53.
  28. C. Cacho, E. Turiel, C.P. Conde, Molecularly imprinted polymers: an analytical tool for the determination of benzimidazole compounds in water samples, Talanta, 78 (2009) 1029–1035.
  29. R.R. Pupin, M.V. Foguel, L.M. Gonçalves, M.P.T. Sotomayor, Magnetic molecularly imprinted polymers obtained by photopolymerization for selective recognition of penicillin G, J. Appl. Polym. Sci., 137 (2019) 1–10.
  30. D.A. Spivak, Optimization, evaluation, and characterization of molecularly imprinted polymers, Adv. Drug Deliv. Rev., 57 (2005) 1779–1794.
  31. P.A. Cormack, A.Z. Elorza, Molecularly imprinted polymers: synthesis and characterisation, J. Chromatogr. B, 804 (2004) 173–182.
  32. Z. Meng, W. Chen, A. Mulchandani, Removal of estrogenic pollutants from contaminated water using molecularly imprinted polymers, Environ. Sci. Technol., 39 (2005) 8958–8962.
  33. M. Li, D. Shu, L. Jiang, Cu(II)-influenced adsorption of ciprofloxacin from aqueous solutions by magnetic graphene oxide/nitrilotriacetic acid nanocomposite: competition and enhancement mechanisms, Chem. Eng. J., 319 (2017) 219–228.
  34. H. Peng, B. Pan, M. Wu, Y. Liu, D. Zhang, B. Xing, Adsorption of ofloxacin and norfloxacin on carbon nanotubes: hydrophobicity and structure-controlled process, J. Hazard. Mater., 233–234 (2012) 89–96.
  35. Y. Lin, S. Xu, L. Jia, Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles, Chem. Eng. J., 225 (2013) 679–685.
  36. G. Li, D. Zhang, M. Wang, J. Huang, L. Huang, Preparation of activated carbons from Iris tectorum employing ferric nitrate as dopant for removal of tetracycline from aqueous solutions, Ecotoxicol. Environ. Saf., 98 (2013) 273–282.
  37. F. Güzel, H. Sayğılı, Adsorptive efficacy analysis of novel carbonaceous sorbent derived from grape industrial processing wastes towards tetracycline in aqueous solution, J. Taiwan Inst. Chem., 60 (2016) 236–240.
  38. Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci., 368 (2012) 540–546.
  39. L. Ji, W. Chen, L. Duan, D. Zhu, Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents, Environ. Sci. Technol., 43 (2018) 2322–2327.
  40. J.R. Utrilla, C.V.G. Pacheco, M.S. Polo, J.J.L. Peñalver, R.O. Pérez, Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents, J. Environ. Manage., 131 (2013) 16–24.
  41. Z. Li, P.H. Chang, J.S. Jean, W.T. Jiang, C.J. Wang, Interaction between tetracycline and smectite in aqueous solution, J. Colloid Interface Sci., 341 (2010) 311–319.
  42. N. You, X.F. Wang, J.Y. Li, H.T. Fan, H. Shen, Q. Zhang, Synergistic removal of arsanilic acid using adsorption and magnetic separation technique based on Fe3O4@graphene nanocomposite, J. Ind. Eng. Chem., 70 (2019) 346–354.
  43. Z. Li, L. Schulz, C. Ackley, N. Fenske, Adsorption of tetracycline on kaolinite with pH-dependent surface charges, J. Colloid Interface Sci., 351 (2010) 254–260.
  44. P.H. Chang, Z. Li, W.T. Jiang, J.S. Jean, Adsorption and intercalation of tetracycline by clay minerals, Appl. Clay Sci., 46 (2009) 27–36.
  45. P.H. Chang, Z. Li, T.L. Yu, S. Munkhbayer, T.H. Kuo, Y.C. Hung, J.S. Jean, Sorptive removal of tetracycline from water by palygorskite, J. Hazard. Mater., 165 (2009) 148–155.
  46. M.H. Marshal, M. Esmaieli, H. Abolghasemi, M.H. Marzbali, Tetracycline adsorption by H3PO4-activated carbon produced from apricot nut shells: a batch study, Process Saf. Environ. Prot., 102 (2016) 700–709.
  47. M.B. Ahmed, J.L. Zhou, H.H. Ngo, Adsorptive removal of antibiotics from water and wastewater: progress and challenges, Sci. Total Environ., 532 (2015) 259–268.
  48. Y. Zhang, Z. Jiao, Y. Hu, S. Lv, H. Fan, Y. Zeng, Removal of tetracycline and oxytetracycline from water by magnetic Fe3O4 graphene, Environ. Sci. Pollut. Res., 15 (2016) 1–9.
  49. X. Ren, C. Chen, M. Nagatsu, X. Wang, Carbon nanotubes as adsorbents in environmental pollution management: a review, Chem. Eng. J., 170 (2011) 395–410.
  50. L. Ji, Y. Shao, Z. Xu, S. Zheng, D. Zhu, Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching, Environ. Sci. Technol., 44 (2010) 6429–6436.
  51. D. Balarak, H. Azarpira, F.K. Mostafapour, Study of the adsorption mechanisms of cephalexin on to Azolla filiculoides, Pharm. Chem., 8 (2016) 114–121.
  52. S. Li, X. Zhang, Y. Huang, Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water, J. Hazard. Mater., 321 (2017) 711–719.
  53. N. You, Y.X. Song, H.R. Wang, L.X. Kang, H.T. Fan, Sol–gel derived Benzo–Crown ether-functionalized silica gel for selective adsorption of Ca2+ ions, J. Chem. Eng. Data, 64 (2019) 1378–1384.
  54. F. Wang, B. Yang, H. Wang, Q. Song, F. Tan, Y. Cao, Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite, J. Mol. Liq., 222 (2016) 188–194.
  55. S.X. Zha, Y. Zhou, X. Jin, Z. Chen, The removal of amoxicillin from wastewater using organobentonite, J. Environ. Manage., 129 (2013) 569–576.
  56. U.A. Guler, M. Sarioglu, Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies, J. Environ. Health. Sci. Eng., 12 (2014) 79–87.
  57. H. Azarpira, Y. Mahdavi, O. Khaleghi, Thermodynamic studies on the removal of metronidazole antibiotic by multi-walled carbon nanotubes, Pharm. Lett., 8 (2016) 107–113.
  58. F. Yu, Y. Li, S. Han, Adsorptive removal of antibiotics from aqueous solution using carbon materials, Chemosphere, 153 (2016) 365–385.
  59. D. Balarak, G. McKay, Utilization of MWCNTs/Al2O3 as adsorbent for ciprofloxacin removal: equilibrium, kinetics and thermodynamic studies, J. Environ. Sci. Health, Part A: Toxic/ Hazard. Subst. Environ. Eng., 56 (2021) 324–333.
  60. D. Balarak, Z. Taheri, M.J. Shim, S.M. Lee, C. Jeon, Adsorption kinetics and thermodynamics and equilibrium of ibuprofen from aqueous solutions by activated carbon prepared from Lemna minor, Desal. Water Treat., 215 (2021) 183–193.