References

  1. C.P. Athanasekou, N.G. Moustakas, S. Morales-Torres, L.M. Pastrana-Martínez, J.L. Figueiredo, J.L. Faria, A.M.T. Silva, J.M. Dona-Rodriguez, G. Em. Romanos, P. Falaras, Ceramic photocatalytic membranes for water filtration under UV and visible light, Appl. Catal., B, 178 (2015) 12–19.
  2. R. Ahmad, C.S. Lee, J.H. Kim, J. Kim, Partially coated TiO2 on Al2O3 membrane for high water flux and photodegradation by novel filtration strategy in photocatalytic membrane reactors, Chem. Eng. Res. Des., 163 (2020) 138–148.
  3. A. Golshenas, Z. Sadeghian, S.N. Ashrafizadeh, Performance evaluation of a ceramic-based photocatalytic membrane reactor for treatment of oily wastewater, J. Water Process Eng., 36 (2020) 101186, doi: 10.1016/j.jwpe.2020.101186.
  4. N. Turkten, Z. Cinar, A. Tomruk, M. Bekbolet, Copper-doped TiO2 photocatalysts: application to drinking water by humic matter degradation, Environ. Sci. Pollut. Res., 26 (2019) 36096–36106.
  5. M. Bekbolet, S. Sen-Kavurmaci, The effect of photocatalytic oxidation on molecular size distribution profiles of humic acid, Photochem. Photobiol. Sci., 14 (2015) 576–582.
  6. R. Rajeswari, S. Kanmani, A study on synergistic effect of photocatalytic ozonation for carbaryl degradation, Desalination, 242 (2009) 277–285.
  7. Q. Li, R. Jia, J. Shao, Y. He, Photocatalytic degradation of amoxicillin via TiO2 nanoparticle coupling with a novel submerged porous ceramic membrane reactor, J. Cleaner Prod., 209 (2019) 755–761.
  8. V.C. Sarasidis, K.V. Plakas, S.I. Patsios, A.J. Karabelas, Investigation of diclofenac degradation in a continuous photocatalytic membrane reactor. Influence of operating parameters, Chem. Eng. J., 239 (2014) 299–311.
  9. S. Leong, A. Razmjou, K. Wang, K. Hapgood, X. Zhang, H. Wang, TiO2 based photocatalytic membranes: a review, J. Membr. Sci., 472 (2014) 167–184.
  10. E. Bet-Moushoul, Y. Mansourpanah, Kh. Farhadi, M. Tabatabaei, TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes, Chem. Eng. J., 283 (2016) 29–46.
  11. I. Horovitz, V. Gitis, D. Avisar, H. Mamane, Ceramic-based photocatalytic membrane reactors for water treatment – where to next?, Rev. Chem. Eng., 36 (2020) 593–622.
  12. H. Zhang, X. Quan, S. Chen, H. Zhao, Y. Zhao, Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water, Sep. Purif. Technol., 50 (2006) 147–155.
  13. J. Mendret, M.H. Fraile, M. Rivallin, S. Brosillon, Hydrophilic composite membranes for simultaneous separation and photocatalytic degradation of organic pollutants, Sep. Purif. Technol., 111 (2013) 9–19.
  14. W.-Y. Wang, A. Irawan, Y. Ku, Photocatalytic degradation of Acid Red 4 using a titanium dioxide membrane supported on a porous ceramic tube, Water Res., 42 (2008) 4725–4732.
  15. K. Szymański, A.W. Morawski, S. Mozia, Humic acids removal in a photocatalytic membrane reactor with a ceramic UF membrane, Chem. Eng. J., 305 (2016) 19–27.
  16. B. Guo, E.V. Pasco, I. Xagoraraki, V.V. Tarabara, Virus removal and inactivation in a hybrid microfiltration-UV process with a photocatalytic membrane, Sep. Purif. Technol., 149 (2015) 245–254.
  17. L. Jiang, X. Zhang, K.H. Choo, Submerged microfiltrationcatalysis hybrid reactor treatment: photocatalytic inactivation of bacteria in secondary wastewater effluent, Sep. Purif. Technol., 198 (2018) 87–92.
  18. Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, 3D printing of ceramics: a review, J. Eur. Ceram. Soc., 39 (2019) 661–687.
  19. J. Moon, J.E. Grau, V. Knezevic, M.J. Cima, E.M. Sachs, Ink-jet printing of binders for ceramic components, J. Am. Ceram. Soc., 85 (2002) 755–762.
  20. K. Sirirerkratana, P. Kemacheevakul, S. Chuangchote, Color removal from wastewater by photocatalytic process using titanium dioxide-coated glass, ceramic tile, and stainless steel sheets, J. Cleaner Prod., 215 (2019) 123–130.
  21. H.R. Mahdavi, M. Arzani, T. Mohammadi, Synthesis, characterization and performance evaluation of an optimized ceramic membrane with physical separation and photocatalytic degradation capabilities, Ceram. Int., 44 (2018) 10281–10292.
  22. H. Zhang, X. Quan, S. Chen, H. Zhao, Y. Zhao, W. Li, Zirconia and titania composite membranes for liquid phase separation: preparation and characterization, Desalination, 190 (2006) 172–180.
  23. H. Wu, X. Xu, L. Shi, Y. Yin, L.-C. Zhang, Z. Wu, X. Duan, S. Wang, H. Sun, Manganese oxide integrated catalytic ceramic membrane for degradation of organic pollutants using sulfate radicals, Water Res., 167 (2019) 115110, doi: 10.1016/j. watres.2019.115110.
  24. T.A. Otitoju, P. Ugochukwu Okoye, G. Chen, Y. Li, M.O. Okoye, S. Li, Advanced ceramic components: materials, fabrication, and applications, J. Ind. Eng. Chem., 85 (2020) 34–65.
  25. N. Boussemghoune, M. Chikhi, Y. Ozay, P. Guler, B.O. Unal, N. Dizge, The investigation of organic binder effect on morphological structure of ceramic membrane support, Symmetry, 12 (2020) 770, doi: 10.3390/sym12050770.
  26. A.Y. Pulyalina, V. Rostovtseva, I. Faykov, A. Toikka, Application of polymer membranes for a purification of fuel oxygenated additive. Methanol/methyl tert-butyl ether (MTBE) separation via pervaporation: a comprehensive review, Polymers, 12 (2020) 2218, doi: 10.3390/polym12102218.
  27. Y. Yang, H. Zhang, P. Wang, Q. Zheng, J. Li, The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane, J. Membr. Sci., 288 (2007) 231–238.
  28. A. Majumder, A.K. Gupta, P.S. Ghosal, M. Varma, A review on hospital wastewater treatment: a special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2, J. Environ. Chem. Eng., 9 (2021) 104812, doi: 10.1016/j.jece.2020.104812.
  29. P. Jutaporn, W. Laolertworakul, M.D. Armstrong, O. Coronell, Fluorescence spectroscopy for assessing trihalomethane precursors removal by MIEX resin, Water Sci. Technol., 79 (2019) 820–832.
  30. B. Darunee, T. Bhongsuwan, Slip casting of alumina for membrane application, J. Appl. Membr. Sci. Technol., 6 (2007) 35–43.
  31. C.Y. Huang, C.C. Ko, L.H. Chen, C.T. Huang, K.L. Tung, Y.C. Liao, A simple coating method to prepare superhydrophobic layers on ceramic alumina for vacuum membrane distillation, Sep. Purif. Technol., 198 (2018) 79–86.
  32. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 22nd ed., American Public Health Association, American Water Works Association, Water Environment Federation, USA, 2012.
  33. P.G. Coble, Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy, Mar. Chem., 51 (1996) 325–346.
  34. C.A. Stedmon, S. Markager, R. Bro, Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy, Mar. Chem., 82 (2003) 239–254.
  35. Y. Engelborghs, A.J.W.G. Visser, Fluorescence Spectroscopy and Microscopy: Methods and Protocols, Methods in Molecular Biology, Vol. 1076, Springer, Switzerland, 2014, pp. 3–27.
  36. L. Djafer, A. Ayral, A. Ouagued, Robust synthesis and performance of a titania-based ultrafiltration membrane with photocatalytic properties, Sep. Purif. Technol., 75 (2010) 198–203.
  37. M. Antonopoulou, C. Kosma, T. Albanis, I. Konstantinou, An overview of homogeneous and heterogeneous photocatalysis applications for the removal of pharmaceutical compounds from real or synthetic hospital wastewaters under lab or pilot scale, Sci. Total Environ., 765 (2021) 144163, doi: 10.1016/j. scitotenv.2020.144163.
  38. W. Khongnakorn, W. Bootluck, P. Jutaporn, Surface modification of FO membrane by plasma-grafting polymerization to minimize protein fouling, J. Water Process Eng., 38 (2020) 101633, doi: 10.1016/j.jwpe.2020.101633.
  39. S. Bu, Z. Jin, X. Liu, H. Du, Z. Cheng, Preparation and formation mechanism of porous TiO2 films using PEG and alcohol solvent as double-templates, J. Sol-Gel Sci. Technol., 30 (2004) 239–248.
  40. D. Mesquita, C. Quintelas, A. Amaral, E. Ferreira, Monitoring biological wastewater treatment processes: recent advances in spectroscopy applications, Rev. Environ. Sci. Biotechnol., 16 (2017) 395–424.
  41. C. Musikavong, S. Wattanachira, F. Nakajima, H. Furumai, Three dimensional fluorescent spectroscopy analysis for the evaluation of organic matter removal from industrial estate wastewater by stabilization ponds, Water Sci. Technol., 55 (2007) 201–210.
  42. D.D. Phong, J. Hur, Insight into photocatalytic degradation of dissolved organic matter in UVA/TiO2 systems revealed by fluorescence EEM-PARAFAC, Water Res., 87 (2015) 119–126.
  43. K. Poojamnong, K. Tungsudjawong, W. Khongnakorn, P. Jutaporn, Characterization of reversible and irreversible foulants in membrane bioreactor (MBR) for eucalyptus pulp and paper mill wastewater treatment using fluorescence regional integration, J. Environ. Chem. Eng., 8 (2020) 104231, doi: 10.1016/j.jece.2020.104231.
  44. L. Yang, J. Hur, W. Zhuang, Occurrence and behaviors of fluorescence EEM-PARAFAC components in drinking water and wastewater treatment systems and their applications: a review, Environ. Sci. Pollut. Res., 22 (2015) 6500–6510.
  45. P. Jutaporn, P.C. Singer, R.M. Cory, O. Coronell, Minimization of short-term low-pressure membrane fouling using a magnetic ion exchange (MIEX®) resin, Water Res., 98 (2016) 225–234.