References

  1. The United Nations, Water and Climate Change, Report on World Water Development, Paris, 2020.
  2. M.M. Mekonnen, A.Y. Hoekstra, Sustainability: four billion people facing severe water scarcity, Sci. Adv., 2 (2016) 1–7.
  3. F.L. Paton, J.P. Baulis, B.S. Staniford, H.R. Maier, G.C. Dandy, Considering Sustainability in the Planning and Management of Regional Urban Water Supply Systems: A Case Study of Adelaide’s Southern System, 18th World IMACS Congress (MODSIM), Cairns, Australia, 2009.
  4. M.C. Garg, Renewable Energy Powered Membrane Technology: Cost Analysis and Energy Consumption, In: A. Basile, K. Ghasemzadeh, Eds., Current Trends and Future Developments on (Bio-) Membranes, Elsevier, Amsterdam, 2019, pp. 85–110.
  5. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  6. M. Isaka, Water Desalination Using Renewable Energy, IRENA Report, Abu Dhabi, 2012.
  7. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marĩas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301–310.
  8. D. Attarde, M. Jain, P.K. Singh, S.K. Gupta, Energy-efficient seawater desalination and wastewater treatment using osmotically driven membrane processes, Desalination, 413 (2017) 86–100.
  9. S.G.S.A. Rothausen, D.Conway, Greenhouse-gas emissions from energy use in the water sector, Nat. Clim. Change, 1 (2011) 210–219.
  10. J.L. Schnoor, Water-energy nexus, Environ. Sci. Technol., 45 (2011) 5065, doi: 10.1021/es2016632.
  11. M.M. Mekonnen, P.W. Gerbens-Leenes, A.Y. Hoekstra, The consumptive water footprint of electricity and heat: a global assessment, Environ. Sci. Water Res. Technol., 1 (2015) 285–297.
  12. A. Vickers, Handbook of Water Use and Conservation, Waterplow Press, United States, 2001.
  13. International Energy Agency, Water - Energy Nexus, Report on World Energy Outlook, Paris, 2016.
  14. S. Nair, W. Timms, Freshwater footprint of fossil fuel production and thermal electricity generation and water stresses across the National Electricity Market (NEM) region of Australia, J. Cleaner Prod., 267 (2020) 1–15.
  15. Y. Zhu, S. Jiang, Y. Zhao, H. Li, G. He, L. Li, Life-cycle-based water footprint assessment of coal-fired power generation in China, J. Cleaner Prod., 254 (2020) 1–11.
  16. S. Vaca-Jiménez, P.W. Gerbens-Leenes, S. Nonhebel, The water footprint of electricity in Ecuador: technology and fuel variation indicate pathways towards water-efficient electricity mixes, Water Resour. Ind., 22 (2019) 100112–10131, doi: 10.1016/j. wri.2019.100112.
  17. D. Vanham, H. Medarac, J.F. Schyns, R.J. Hogeboom, D. Magagna, The consumptive water footprint of the European union energy sector, Environ. Res. Lett., 14 (2019) 104016– 104029, doi: 10.1088/1748-9326/ab374a.
  18. J.L. Tsou, J. Maulbetsch, J. Shi, Power Plant Cooling System Overview for Researchers and Technology Developers, Report on Electric Power Research Instituto, Palo Alto CA, 2013.
  19. S.Y. Pan, S.W. Snyder, A.I. Packman, Y.J. Linm P.C. Chiang, Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus, Water-Energy Nexus, 1 (2018) 26–41.
  20. E.A. Byers, J. W. Hall, J.M. Amezaga, Electricity generation and cooling water use: UK pathways to 2050, Global Environ. Change, 25 (2014) 16–30.
  21. S.W. Mohammed Ali, N. Vahedi, C. Romero, A. Banerjee, Water usage and energy penalty of different hybrid cooling system configurations for a natural gas combined cycle power plant— Effect of carbon capture unit integration, Int. J. Energy Res., 43 (2019) 5879–5896.
  22. L. Wang, Y. Van Fan, P.S. Varbanov, S. Rafidah, W. Alwi, Water footprints and virtual water flows embodied in the power supply chain, Water, 12 (2020) 1–21.
  23. National Ground Water Association, Facts About Global Groundwater Usage, Ohio, USA, 2016.
  24. M. Wakeel, B. Chen, T. Hayat, A. Alsaedi, B. Ahmad, Energy consumption for water use cycles in different countries: a review, Appl. Energy, 178 (2016) 868–885.
  25. International Renewable Energy Agency, Renewable Energy in the Water, Energy and Food Nexus, Technical Report, Abu Dhabi, United Arab Emirates, 2015.
  26. S. Miller, H. Shemer, R. Semiat, Energy and Environmental Issues in Desalination, Desalination, 366 (2015) 2–8.
  27. X. Jia, J.J. Klemeš, P.S. Varbanov, S.R.W. Alwi, Analyzing the energy consumption, GHG emission, and cost of seawater desalination in China, Energies, 12 (2019) 1–16.
  28. J.R. Stokes, A.Horvath, Energy and air emission effects of water supply, Environ. Sci. Technol., 43 (2009) 2680–2687.
  29. J. Liu, S. Chen, H. Wang, X. Chen, Calculation of carbon footprints for water diversion and desalination projects, Energy Procedia, 75 (2015) 2483–2494.
  30. T.N. Bitaw, K. Park, J. Kim, J.W. Chang, D.R. Yang, Lowrecovery, -energy-consumption, -emission hybrid systems of seawater desalination: energy optimization and cost analysis, Desalination, 468 (2019) 114085–114097, doi: 10.1016/j.desal.2019.114085.
  31. S. Hophmayer-tokich, T. Kadiman, Water Management on Islands: Common Issues and Possible Actions, Ceter for Clean Technology and Environmental Policy, Enschede, 2006.
  32. J.C. Santamarta, J. Rodríguez-Martín, Introduction to Water Problems in Canary Islands, J.C. Santamarta, L.E. Hernández, Eds., Environmental Security Geological Hazards and Management, EACEA, Canary Islands, Spain, 2013, pp. 171–178.
  33. A. Morales González, The Culture of Water on the Island of Lanzarote, 16th–20th Centuries, XII Conference of Studies on Lanzarote and Fuerteventura, Canary Islands, Spain, 2008.
  34. A. Gómez-Gotor, B. del Río-Gamero, I. Prieto Prado, A. Casañas, The history of desalination in the Canary Islands, Desalination, 428 (2017) 86–107.
  35. Canary Government, Anuario del sector eléctrico de Canarias, Report on Ministry of Ecological Transition, Fight against Climate Change and Territorial Planning, Canary Islands, 2019.
  36. B. del Río-Gamero, A.G. Gotor, Calculation of greenhouse gas emissions in Canary Islands wastewater treatment plants, Desal. Water Treat., 197 (2020) 101–111.
  37. Canary Technologial Institute, Plan de ECOGESTIÓN en la Producción y Distribución de Agua de Canarias 2014–2020, Canary Government Report, Canary Islands, 2014.
  38. Canary Islands Water Center Foundation, Listado de Desaladoras en Canarias, 2013.
  39. La Vanguardia Newspaper, Desaladora Arucas-Moya Recibe Inversión de 1 Millón Para Mejorar Eficiencia, Canary Islands, 2020.
  40. United Nations, Kyoto Protocol to the United Nations Framework Convention on Climate Change, Technical Report, Japan, 1998.
  41. United Nations, Paris Agreement, Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change, Paris, 2015.
  42. International Panel on Climate Change, Global Warming of 1.5°C, Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Geneva, Switzerland, 2018.
  43. A.E. Ercin, A.Y. Hoekstra, Carbon and Water Footprints, Report on United Nations World Water Assessment Programme, Paris, 2012.
  44. S.A. Ihobe, Análisis de Ciclo de Vida y Huella de Carbono, Report on Public Society of Environmental Management, Bilbao, 2009.
  45. T. Wiedmann, J.C. Minx, Chapter 1 – A Definition of Carbon Footprint, C.C. Pertsova, Ed., Ecological Economics Research Trends, Nova Science Publishers, Hauppauge, NY, 2008, pp. 1–11.
  46. J. Ruževičius, M. Dapkus, Methodologies for calculating the carbon footprint of small organizations, Qual. Access Success, 19 (2018) 112–117.
  47. A. Barnett, R.W. Barraclough, V. Becerra, S.J. Nasuto, A comparison of methods for calculating the carbon footprint of a product, Int. Symp. Sustainable Syst. Technol., 1 (2013) 1–6.
  48. D. Pandey, M. Agrawal, J.S. Pandey, Carbon footprint: current methods of estimation, Environ. Monit. Assess., 178 (2011) 135–160.
  49. Association Scientifique et Technique Por l’ eau et L’environnement, Guide Méthodologique des Émissions de Gaz á Effet de Serre des Services de L’eau et de L’assainissement, ADEME, France, 2018.
  50. International Organization for Standardization, ISO14040: Environmental Management–Life Cycle Assessment–Principles and Framework, Geneva, Switzerland, 2006.
  51. Agence de l’ Environnement et de la Maitrise de l’ Energie, Documentation des Facteurs d’émissions de la Base Carbone, France, 2014.
  52. H.C. Gils, S. Simon, Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands, Appl. Energy, 188 (2017) 342–355.
  53. M. Veigas, G. Iglesias, Wave and offshore wind potential for the island of Tenerife, Energy Convers. Manage., 76 (2013) 738–745.
  54. L. Fernández Prieto, G. Rodríguez Rodríguez, J. Schallenberg Rodríguez, Wave energy to power a desalination plant in the north of Gran Canaria Island: wave resource, socioeconomic and environmental assessment, J. Environ. Manage., 231 (2019) 546–551.
  55. E. Rosales-Asensio, F.J. García-Moya, A. González-Martínez, D. Borge-Diez, M. de Simón-Martín, Stress mitigation of conventional water resources in water-scarce areas through the use of renewable energy powered desalination plants: an application to the Canary Islands, Energy Rep., 6 (2019) 124–135.
  56. T. Younos, K.E. Tulou, Overview of desalination techniques, J. Contemp. Water Res. Educ., 132 (2005) 3–10.
  57. Z. Li, R.V. Linares, S. Bucs, L. Fortunato, C. Hélix-Nielsen, J.S. Vrouwenvelder, N. Ghaffour, T. Leiknes, G. Amy, Aquaporin based biomimetic membrane in forward osmosis: chemical cleaning resistance and practical operation, Desalination, 420 (2017) 208–215.
  58. U. Singh, Carbon capture and storage: an effective way to mitigate global warming, Curr. Sci., 105 (2013) 914–922.
  59. Y.H. Teow, A.W. Mohammad, New generation nanomaterials for water desalination: a review, Desalination, 45 (2019) 2–17.
  60. P. Mathieu, The International Panel on Climate Change special Report on Carbon Dioxide Capture and Storage, Cabridge University Press, New York, USA, 2006.
  61. Environmental Protection Agency, Literature Survey of Carbon Capture Technology, United States, 2015.
  62. Gobierno de Canarias, Cartografía de Canarias: Visor de Grafcan, Sistema de Información Terrirorial de Canarias, Canary Islands, Spain, 2020.
  63. Insular Water Council of Las Palmas de Gran Canarias, Personal comunication, Canary Islands, Spain, 2019.
  64. J. Schallenberg-Rodríguez, B. Del Rio-Gamero, N. Melian-Martel, T. Lis Alecio, J. González Herrera, Energy supply of a large size desalination plant using wave energy. Practical case: North of Gran Canaria, Appl. Energy, 278 (2020) 115681–115695,doi: 10.1016/j.apenergy.2020.115681.