References

  1. P.H. Howard, Handbook of Environmental Fate and Exposure Data: For Organic Chemicals, Volume III Pesticides, CRC press, Boca Raton, Florida, 1991.
  2. G.Z. Memon, M.I. Bhanger, M. Akhtar, F.N. Talpur, J.R. Memon, Adsorption of methyl parathion pesticide from water using watermelon peels as a low cost adsorbent, Chem. Eng. J., 138 (2008) 616–621.
  3. H.F. Shaalan, Treatment of pesticides containing effluents using organoclays/nanofiltration systems: rational design and cost indicators, Desal. Water Treat., 5 (2009) 153–158.
  4. M. Armaghan, M.M. Amini, Adsorption of diazinon and fenitrothion on MCM-41 and MCM-48 mesoporous silicas from non-polar solvent, Colloid J., 71 (2009) 583–588.
  5. M. Armaghan, M.M. Amini, Adsorption of diazinon and fenitrothion on nanocrystalline magnesium oxides, Arabian J. Chem., 10 (2017) 91–99.
  6. Y. Nakaoka, H. Katsumata, S. Kaneco, T. Suzuki, K. Ohta, Photocatalytic degradation of diazinon in aqueous solution by platinized TiO2, Desal. Water Treat., 13 (2010) 427–436.
  7. L. Sarabia, I. Maurer, E. Bustos-Obregón, Melatonin prevents damage elicited by the organophosphorous pesticide diazinon on mouse sperm DNA, Ecotoxicol. Environ. Saf., 72 (2009) 663–668.
  8. H.M. Dutta, D. Misquitta, S. Khan, The effects of endosulfan on the testes of bluegill fish, Lepomis macrochirus: a histopathological study, Arch. Environ. Contam. Toxicol., 51 (2006) 149–156.
  9. P. Moudgil, A. Gupta, A. Sharma, S. Gupta, A. Tiwary, Potentiation of spermicidal activity of 2’,4’-dichlorobenzamil by lidocaine, Indian J. Exp. Biol., 40 (2002) 1373–1377.
  10. M. Yousef, F.E. Demerdash, K.A. Salhen, Protective role of isoflavones against the toxic effect of cypermethrin on semen quality and testosterone levels of rabbits, J. Environ. Sci. Health., Part B, 38 (2003) 463–478.
  11. F. Kamel, A.S. Rowland, L.P. Park, W.K. Anger, D.D. Baird, B.C. Gladen, T. Moreno, L. Stallone, D.P. Sandler, Neurobehavioral performance and work experience in Florida farmworkers, Environ. Health Perspect., 111 (2003) 1765–1772.
  12. J.A. Firestone, T.S. Weller, G. Franklin, P. Swanson, W. Longstreth, H. Checkoway, Pesticides and risk of Parkinson disease: a population-based case-control study, Arch. Neurol., 62 (2005) 91–95.
  13. L. Ezemonye, T. Ikpesu, I. Tongo, Distribution of diazinon in water, sediment and fish from Warri River, Niger Delta, Nigeria, Jordan, J. Biol. Sci., 1 (2008) 77–83.
  14. A.B. Couso, D.F. Calviño, M.P. Moure, J.C.N. Muñoz, J.S. Gándara, M.A. Estévez, Adsorption and desorption kinetics of carbofuran in acid soils, J. Hazard. Mater., 190 (2011) 159–167.
  15. B.J. Johnson, A.P. Malanoski, I.A. Leska, B.J. Melde, J.R. Taft, M.A. Dinderman, J.R. Deschamps, Adsorption of organophosphates from solution by porous organosilicates: capillary phase-separation, Microporous Mesoporous Mater., 195 (2014) 154–160.
  16. M. Brigante, M. Avena, Synthesis, characterization and application of a hexagonal mesoporous silica for pesticide removal from aqueous solution, Microporous Mesoporous Mater., 191 (2014) 1–9.
  17. M.I. Badawy, M.Y. Ghaly, T.A.G. Allah, Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater, Desalination, 194 (2006) 166–175.
  18. Y. Sun, J.J. Pignatello, Photochemical reactions involved in the total mineralization of 2,4-D by iron3+/hydrogen peroxide/ UV, Environ. Sci. Technol., 27 (1993) 304–310.
  19. O.M. Alfano, R.J. Brandi, A.E. Cassano, Degradation kinetics of 2,4-D in water employing hydrogen peroxide and UV radiation, Chem. Eng. J., 82 (2001) 209–218.
  20. W. Chu, Modeling the quantum yields of herbicide 2,4-D decay in UV/H2O2 process, Chemosphere, 44 (2001) 935–941.
  21. R.J. Wu, C.C. Chen, C.S. Lu, P.Y. Hsu, M.H. Chen, Phorate degradation by TiO2 photocatalysis: parameter and reaction pathway investigations, Desalination, 250 (2010) 869–875.
  22. M. Trillas, J. Peral, X. Domènech, Redox photodegradation of 2,4-dichlorophenoxyacetic acid over TiO2, Appl. Catal., B, 5 (1995) 377–387.
  23. M. Trillas, J. Peral, X. Domenech, Photocatalyzed degradation of phenol, 2,4‐dichlorophenol, phenoxyacetic acid and 2,4‐dichlorophenoxyacetic acid over supported TiO2 in a flow system, J. Chem. Technol. Biotechnol., 67 (1996) 237–242.
  24. E. Brillas, J.C. Calpe, J. Casado, Mineralization of 2,4-D by advanced electrochemical oxidation processes, Water Res., 34 (2000) 2253–2262.
  25. E. Brillas, R. Sauleda, J. Casado, Degradation of 4‐chlorophenol by anodic oxidation, electro-Fenton, photoelectro-Fenton, and peroxi-coagulation processes, J. Electrochem. Soc., 145 (1998) 759–765.
  26. P. Pillewan, S. Mukherjee, A.K. Meher, S. Rayalu, A. Bansiwal, Removal of arsenic(III) and arsenic(V) using copper exchange zeolite‐A, Environ. Prog. Sustainable Energy, 33 (2014) 1274–1282.
  27. S. Salvestrini, P. Vanore, P. Iovino, V. Leone, S. Capasso, Adsorption of simazine and boscalid onto acid-activated natural clinoptilolite, Environ. Eng. Manage. J., 14 (2015) 1705–1712.
  28. R.E. Apreutesei, C. Catrinescu, C. Teodosiu, Studies regarding phenol and 4-chlorophenol sorption by surfactant modified zeolites, Environ. Eng. Manage. J., 8 (2009) 651–656.
  29. E. Fuentes, M.E. Báez, R. Labra, Parameters affecting microwave-assisted extraction of organophosphorus pesticides from agricultural soil, J. Chromatogr. A, 1169 (2007) 40–46.
  30. W. Baarschers, J. Elvish, S. Ryan, Adsorption of fenitrothion and 3-methyl-4-nitrophenol on soils and sediment, Bull. Environ. Contam. Toxicol., 30 (1983) 621–627.
  31. G.M. Lule, M.U. Atalay, Comparison of fenitrothion and trifluralin adsorption on organo-zeolites and activated carbon. Part II: thermodynamic parameters and the suitability of the kinetic models of pesticide adsorption, Part. Sci. Technol., 32 (2014) 426–430.
  32. B. Bowman, W. Sans, Adsorption of parathion, fenitrothion, methyl parathion, aminoparathion and paraoxon by Na+, Ca2+, and Fe3+ montmorillonite suspensions, Soil Sci. Soc. Am. J., 41 (1977) 514–519.
  33. J.S. Lee, J.H. Kim, J.T. Kim, J.K. Suh, J.M. Lee, C.H. Lee, Adsorption equilibria of CO2 on zeolite 13X and zeolite X/activated carbon composite, J. Chem. Eng. Data, 47 (2002) 1237–1242.
  34. H. Zhang, Y. Wang, P. Bai, X. Guo, Adsorption of Acetic Acid from Dilute Solution on Zeolite 13X: Isotherm, Kinetic and Thermodynamic Studies, Proceedings of 3rd International Conference on Application of Materials Science and Environmental Materials (AMSEM2015), World Scientific, Phuket Island, Thailand, 2016, pp. 40–47.
  35. L.Z. Melgar, S. Machado, Determination of fenitrothion in commercial formulations by square wave voltammetry and UV-Vis spectroscopy, J. Braz. Chem. Soc., 16 (2005) 743–748.
  36. H. Esfandian, V. Garshasbi, Investigation of methane adsorption on molecular sieve zeolite (from natural materials), Gas Process. J., 8 (2020) 35–50.
  37. Y. Ma, C. Yan, A. Alshameri, X. Qiu, C. Zhou, Synthesis and characterization of 13X zeolite from low-grade natural kaolin, Adv. Powder Technol., 25 (2014) 495–499.
  38. T.Z. Ren, Z.Y. Yuan, B.L. Su, Surfactant-assisted preparation of hollow microspheres of mesoporous TiO2, Chem. Phys. Lett., 374 (2003) 170–175.
  39. A.S. Maybodi, S.M. Pourali, Microwave-assisted aging synthesis of bismuth modified zeolite-P microspheres via BiOCl nanoflake transformation, Microporous Mesoporous Mater., 167 (2013) 127–132.
  40. K.H. Schnabel, G. Finger, J. Kornatowski, E. Löffler, C. Peuker, W. Pilz, Decomposition of template in SAPO-5 and AlPO 4-5 molecular sieves studied by IR and Raman spectroscopy, Microporous Mater., 11 (1997) 293–302.
  41. G. Sánchez, B. Dlugogorski, E. Kennedy, M. Stockenhuber, Zeolite-supported iron catalysts for allyl alcohol synthesis from glycerol, Appl. Catal., A, 509 (2016) 130–142.
  42. T. Mehta, A. Rathi, A. Verma, S. Barman, G. Halder, Elimination of Fipronil insecticide by adsorption technique from aqueous solution by Cu-13X zeolite composite: isotherms, kinetic and thermodynamic studies, Int. J. Environ. Anal. Chem., (2020) 1–17, doi: 10.1080/03067319.2020.1790545.
  43. H. Esfandian, A.S. Maybodi, M. Parvini, B. Khoshandam, Development of a novel method for the removal of diazinon pesticide from aqueous solution and modeling by artificial neural networks (ANN), J. Ind. Eng. Chem., 35 (2016) 295–308.
  44. P. Mondal, B. Mohanty, C.B. Majumder, Removal of arsenic from simulated groundwater using GAC‐Ca in batch reactor: kinetics and equilibrium studies, Clean–Soil Air Water, 40 (2012) 506–514.
  45. H. Esfandian, S.G. Pakdehi, M.J. Cattallany, Development of a novel method for sodium azide removal from aqueous solution using amberlite IRA-900: batch and column adsorption studies, Desal. Water Treat., 193 (2020) 381–391.
  46. H. Esfandian, M. Parvini, B. Khoshandam, A.S. Maybodi, Artificial neural network (ANN) technique for modeling the mercury adsorption from aqueous solution using Sargassum Bevanom algae, Desal. Water Treat., 57 (2016) 1–14.
  47. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
  48. R.H. Chen, H.T. Qiao, Y. Liu, Y.H. Dong, P. Wang, Z. Zhang, T. Jin, Adsorption of methylene blue from an aqueous solution using a cucurbituril polymer, Environ. Prog. Sustainable Energy, 34 (2015) 512–519.
  49. A. Shukla, Y.H. Zhang, P. Dubey, J. Margrave, S.S. Shukla, The role of sawdust in the removal of unwanted materials from water, J. Hazard. Mater., 95 (2002) 137–152.
  50. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  51. H. Freundlich, Of the adsorption of gases. Section II. Kinetics and energetics of gas adsorption. Introductory paper to section II, Trans. Faraday Soc., 28 (1932) 195–201.
  52. M. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Phys. Chim. Sin., 12 (1940) 217–222.
  53. P.K. Raul, R.R. Devi, I.M. Umlong, A.J. Thakur, S. Banerjee, V. Veer, Iron oxide hydroxide nanoflower assisted removal of arsenic from water, Mater. Res. Bull., 49 (2014) 360–368.
  54. M. Dubinin, L. Radushkevich, Equation of the characteristic curve of activated charcoal, Chem. Zentr., 1 (1947) 875.
  55. R. Katal, H. Pahlavanzadeh, Zn(II) ion removal from aqueous solution by using a polyaniline composite, J. Vinyl Add. Tech., 17 (2011) 138–145.