References
- J.S. Vrouwenvelder, J.A.M. van Paassen, L.P. Wessels, A.F. van
Dam, S.M. Bakker, The membrane fouling simulator: a practical
tool for fouling prediction and control, J. Membr. Sci., 281 (2006)
316–324.
- M.J. Boorsma, S. Dost, S. Klinkhamer, J.C. Schippers, Monitoring
and controlling biofouling in an integrated membrane system,
Desal. Water Treat., 31 (2011) 347–353.
- E. Ben-Dov, E. Ben-David, R. Messalem, M. Herzberg,
A. Kushmaro, Biofilm formation on RO membranes: the
impact of seawater pretreatment, Desal. Water Treat., 57 (2016)
4741–4748.
- L. Fortunato, A.H. Alshahri, A.S.F. Farinha, I. Zakzouk, S. Jeong,
T. Leiknes, Fouling investigation of a full-scale seawater reverse
osmosis desalination (SWRO) plant on the Red Sea: membrane
autopsy and pretreatment efficiency, Desalination, 496 (2020)
114536, doi: 10.1016/j.desal.2020.114536.
- J. Kucera, Biofouling of polyamide membranes: fouling
mechanisms, current mitigation and cleaning strategies, and
future prospects, Membranes (Basel), 9 (2019) 111, doi: 10.3390/
membranes9090111.
- C. Collivignarelli, S. Sorlini, M. Belluati, Chlorite removal with
GAC, J. Am. Water Works Assn., 98 (2006) 74–81.
- J.H. Koh, A. Jang, Effect of chlorine dioxide (ClO2) on polyamide
based RO membrane for seawater desalination process:
exposure to high concentration of ClO2, Desal. Water Treat.,
80 (2017) 11–17.
- R.C. Hoehn, A.A. Rosenblatt, D.J. Gates. Considerations for
Chlorine Dioxide Treatment of Drinking Water, AWWA Water
Quality Technology Conference, Boston, MA, 1996.
- K.S. Werdehoff, P.C. Singer, Chlorine dioxide effects on
THMFP, TOXFP, and the formation of inorganic by-products,
J. AWWA, 79 (1987) 107–113.
- W. Gan, S. Huang, Y. Ge, T. Bond, P. Westerhoff, J. Zhai, X. Yang,
Chlorite formation during ClO2 oxidation of model compounds
having various functional groups and humic substances, Water
Res., 159 (2019) 348–357.
- Dupont, FilmTec Reverse Osmosis Membranes Technical
Manual, in Form No. 45-D01504, 2020, p. 207.
- S. Sorlini, C. Collivignarelli, Chlorite removal with granular
activated carbon, Desalination, 176 (2005) 255–265.
- S. Sorlini, M.C. Collivignarelli, M. Canato, Effectiveness in
chlorite removal by two activated carbons under different
working conditions: a laboratory study, J. Water Supply Res.
Technol. AQUA, 64 (2015) 450–461.
- M.H. Griese, J.J. Kaczur, G. Gordon, Combining methods for
the reduction of oxychlorine residuals in drinking water, J. Am.
Water Works Assn., 84 (1992) 69–77.
- WHO Guidelines for Drinking-Water Quality, Chlorine
Dioxide, Chlorite and Chlorate in Drinking-Water, Switzerland,
2016, p. 18.
- K. Alfredo, B. Stanford, J.A. Roberson, A. Eaton, Chlorate
challenges for water systems, J. AWWA,
107 (2015) E187–E196.
- N. Gonce, E.A. Voudrias, Removal of chlorite and chlorate
ions from water using granular activated carbon, Water Res.,
28 (1994) 1059–1069.
- M.O. Saeed, Effect of dechlorination point location and residual
chlorine on biofouling in a seawater reverse osmosis plant,
Desalination, 143 (2002) 229–235.
- A.B. Mindler, A.C. Epstein, Chapter 2.6 Measurements and
control in reverse osmosis desalination, Desalination, 59 (1986)
343–379.
- S. El-Manharawy, A. Hafez, Technical management of RO
system, Desalination, 131 (2000) 173–188.
- R.J. Xie, E.K. Tan, A.N. Puah, Oxidation-reduction potential in
saline water reverse osmosis membrane desalination and its
potential use for system control, Desal. Water Treat., 3 (2009)
193–203.
- H. Cosson, W.R. Ernst, Photodecomposition of chlorine dioxide
and sodium chlorite in aqueous solution by irradiation with
ultraviolet light, Ind. Eng. Chem. Res., 33 (1994) 1468–1475.
- G. Ferweda, Chlorine dioxide storage: spill containment,
neutralization and vapour suppression, Pulp and Paper Canada
– Ontario, 105 (2004) 63–66.
- O. Basu, N.P.D. Souza, Comparison of dechlorination rates and
water quality impacts for sodium bisulfite, sodium thiosulfate
and ascorbic acid, J. Water Supply Res. Technol. AQUA,
60 (2011) 167–177.
- D. Kaiser, I. Klose, R. Oost, J. Neuhaus, N. Maulide, Bondforming
and breaking reactions at sulfur(IV): sulfoxides,
sulfonium salts, sulfur ylides, and sulfinate salts, Chem. Rev.,
119 (2019) 8701–8780.
- J. Lee, U. von Gunten, J.-H. Kim, Persulfate-based advanced
oxidation: critical assessment of opportunities and roadblocks,
Environ. Sci. Technol., 54 (2020) 3064–3081.
- C. Brandt, R. van Eldik, Transition metal-catalyzed oxidation
of sulfur(IV) oxides. Atmospheric-relevant processes and
mechanisms, Chem. Rev., 95 (1995) 119–190.
- J. Li, Y.L. Zhang, F. Cao, W. Zhang, M. Fan, X. Lee, G. Michalski,
Stable sulfur isotopes revealed a major role of transitionmetal
ion-catalyzed SO2 oxidation in haze episodes, Environ.
Sci. Technol., 54 (2020) 2626–2634.
- M. Nagai, H. Iwahashi, Y. Hayashi, Y. Ogino, The behavior of
an oxidizing/reducing agent in seawater, Desalination, 96 (1994)
291–301.
- A. Katz, N. Narkis, Removal of chlorine dioxide disinfection
by-products by ferrous salts, Water Res., 35 (2001) 101–108.
- F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry,
Wiley, New York, 1988.
- W. Seefelder, R.H. Stadler, Halogenated Disinfection
By-products, P. Worsfold, C. Poole, A. Townshend, M. Miró,
Encyclopedia of Analytical Science, 3rd ed., Academic
Press, Oxford, 2019, pp. 373–378.