References

  1. G. Micale, A. Cipollina, L. Rizzuti, Seawater Desalination for Freshwater Production, G. Micale, L. Rizzuti, A. Cipollina, Eds., Seawater Desalination: Conventional and Renewable Energy Processes, Geneva, 2009, pp. 1–15.
  2. WHO, Drinking-water, World Health Organization, (n.d.), Geneva, Available at: https://www.who.int/news-room/factsheets/ detail/drinking-water (accessed April 25, 2021).
  3. WHO, Water Quality and Health Strategy 2013–2020, World Health Organization, 2016.
  4. P.H. Gleick, L. Allen, J. Christian-Smith, M.J. Cohen, H. Cooley, M. Heberger, J. Morrison, M. Palaniappan, P. Schulte, The World’s Water Volume 7: The Biennial Report on Freshwater Resources, Island Press, Plan Bleu, France, 2012.
  5. C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, State-of-theart of reverse osmosis desalination, Desalination, 216 (2007) 1–76.
  6. E. Jones, M. Qadir, M.T.H. van Vliet, V. Smakhtin, S.-m. Kang, The state of desalination and brine production: a global outlook, Sci. Total Environ., 657 (2019) 1343–1356.
  7. D. Zarzo, D. Prats, Desalination and energy consumption. What can we expect in the near future?, Desalination, 427 (2018) 1–9.
  8. Global Water Intelligence – Archive: Global Water Intelligence, Global Water Intelligence (“GWI”), Holding company and main office (UK), Media Analytics Limited, Registered in England and Wales, American Water Intelligence Inc (USA), Registered in the state of Texas, Global Water Intelligence (Shanghai) Limited, 2020.
  9. J. Eke, A. Yusuf, A. Giwa, A. Sodiq, The global status of desalination: an assessment of current desalination technologies, plants and capacity, Desalination, 495 (2020) 114633, doi: 10.1016/j.desal.2020.114633.
  10. E. Ahmadi, B. McLellan, B. Mohammadi-Ivatloo, T. Tezuka, The role of renewable energy resources in sustainability of water desalination as a potential fresh-water source: an updated review, Sustainability, 12 (2020) 5233, doi: 10.3390/su12135233.
  11. Z. Li, A. Siddiqi, L.D. Anadon, V. Narayanamurti, Towards sustainability in water-energy nexus: ocean energy for seawater desalination, Renewable Sustainable Energy Rev., 82 (2018) 3833–3847.
  12. M. Al-Shammiri, M. Safar, Multi-effect distillation plants: state of the art, Desalination, 126 (1999) 45–59.
  13. M.A. Darwish, N.M. Al-Najem, Energy consumption by multistage flash and reverse osmosis desalters, Appl. Therm. Eng., 20 (2000) 399–416.
  14. A.M. Alklaibi, N. Lior, Membrane-distillation desalination: status and potential, Desalination, 171 (2005) 111–131.
  15. N. Akther, A. Sodiq, A. Giwa, S. Daer, H.A. Arafat, S.W. Hasan, Recent advancements in forward osmosis desalination: a review, Chem. Eng. J., 281 (2015) 502–522.
  16. Y. Oren, Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review), Desalination, 228 (2008) 10–29.
  17. Z. Lu, L. Xu, Freezing desalination process, Therm. Desal. Process., II (2010) 1–7.
  18. J.H. Lienhard, Chapter 9 – Humidification–Dehumidification Desalination, J. Kucera, Ed., Desalination: Water from Water, 2nd ed., Wiley-Scrivener, Hoboken, NJ, 2019, pp. 387–446.
  19. K.C. Kang, P. Linga, K.-n. Park, S.-J. Choi, J.D. Lee, Seawater desalination by gas hydrate process and removal characteristics of dissolved ions (Na+, K+, Mg2+, Ca2+, B3+, Cl, SO42–), Desalination, 353 (2014) 84–90.
  20. S.C.J.M. van Hoof, A. Hashim, A.J. Kordes, The effect of ultrafiltration as pretreatment to reverse osmosis in wastewater reuse and seawater desalination applications, Desalination, 124 (1999) 231–242.
  21. C.K. Diawara, Nanofiltration Process Efficiency in Water Desalination, Sep. Purif. Rev., 37 (2008) 302–324.
  22. M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-waterenvironment nexus underpinning future desalination sustainability, Desalination, 413 (2017) 52–64.
  23. A.N. Mabrouk, H.E.S. Fath, Technoeconomic study of a novel integrated thermal MSF-MED desalination technology, Desalination, 371 (2015) 115–125.
  24. K.C. Ng, K. Thu, S.J. Oh, L. Ang, M.W. Shahzad, A. Bin Ismail, Recent developments in thermally-driven seawater desalination: energy efficiency improvement by hybridization of the MED and AD cycles, Desalination, 356 (2015) 255–270.
  25. A.M. Helal, A.M. El-Nashar, E.S. Al-Katheeri, S.A. Al-Malek, Optimal design of hybrid RO/MSF desalination plants Part III: sensitivity analysis, Desalination, 169 (2004) 43–60.
  26. Under Pressure – The Economic Costs of Water Stress and Mismanagement, FONPLATA, 2021.
  27. M. Hssaisoune, L. Bouchaou, A. Sifeddine, I. Bouimetarhan, A. Chehbouni, Moroccan groundwater resources and evolution with global climate changes, Geosciences, 10 (2020) 81, doi: 10.3390/geosciences10020081.
  28. J. Selma, Expérience de l’ONEP en matière de dessalement d’eau (ONEP’s experience in water desalination), 2009, p. 97.
  29. K. Tahri, Desalination experience in Morocco, Desalination, 136 (2001) 43–48.
  30. H. Boyé, S. Antipolis, Eau, énergie, dessalement et changement climatique en Méditerranée (Water, energy, desalination and climate change in the Mediterranean), 2008.
  31. A. Rich, Y. Mandri, N. Bendaoud, D. Mangin, S. Abderafi, C. Bebon, N. Semlali, J.P. Klein, T. Bounahmidi, A. Bouhaouss, S. Veesler, Freezing desalination of sea water in a static layer crystallizer, Desal. Water Treat., 13 (2010) 120–127.
  32. J.R. Du, X. Zhang, X. Feng, Y. Wu, F. Cheng, M.E.A. Ali, Desalination of high salinity brackish water by an NF-RO hybrid system, Desalination, 491 (2020) 114445, doi: 10.1016/j. desal.2020.114445.
  33. D.E. Sachit, J.N. Veenstra, Analysis of reverse osmosis membrane performance during desalination of simulated brackish surface waters, J. Membr. Sci., 453 (2014) 136–154.
  34. S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58 (2013) 1388–1442.
  35. M. Qasim, M. Badrelzaman, N.N. Darwish, N.A. Darwish, N. Hilal, Reverse osmosis desalination: a state-of-the-art review, Desalination, 459 (2019) 59–104.
  36. M.A. Al-Obaidi, A.A. Alsarayreh, A.M. Al-Hroub, S. Alsadaie, I.M. Mujtaba, Performance analysis of a medium-sized industrial reverse osmosis brackish water desalination plant, Desalination, 443 (2018) 272–284.
  37. M. Qasim, N.N. Darwish, S. Mhiyo, N.A. Darwish, N. Hilal, The use of ultrasound to mitigate membrane fouling in desalination and water treatment, Desalination, 443 (2018) 143–164.
  38. L.D. Nghiem, S. Hawkes, Effects of membrane fouling on the nanofiltration of trace organic contaminants, Desalination, 236 (2009) 273–281.
  39. M.A. Alghoul, P. Poovanaesvaran, M.H. Mohammed, A.M. Fadhil, A.F. Muftah, M.M. Alkilani, K. Sopian, Design and experimental performance of brackish water reverse osmosis desalination unit powered by 2 kW photovoltaic system, Renewable Energy, 93 (2016) 101–114.
  40. I. Nuez, A. Ruiz-García, Chapter 2 – Water Desalination by (Nonsolar) Renewable Energy-Powered RO Systems, A. Basile, A. Cassano, A. Figoli, Eds., Current Trends and Future Developments on (Bio-) Membranes: Renewable Energy Integrated with Membrane Operations, Elsevier, 2019, pp. 21–43.
  41. H. Mahmoudi, N. Ghaffour, M.T.F.A. Goosen, J. Bundschuh, Renewable Energy Technologies for Water Desalination, CRC Press, 2017.
  42. J.C. Schippers, J. Verdouw, The Modified Fouling Index, a method of determining the fouling characteristics of water, Desalination, 32 (1980) 137–148.
  43. A. Ruiz-García, N. Melián-Martel, I. Nuez, Short review on predicting fouling in RO desalination, Membranes (Basel), 7 (2017) 62, doi: 10.3390/membranes7040062.
  44. A. Santafé-Moros, J.M. Gozálvez-Zafrilla, J. Lora-García, Performance of commercial nanofiltration membranes in the removal of nitrate ions, Desalination, 185 (2005) 281–287.
  45. M.A. Menkouchi Sahli, M. Tahaikt, I. Achary, M. Taky, F. Elhanouni, M. Hafsi, M. Elmghari, A. Elmidaouia, Technical optimisation of nitrate removal from ground water by electrodialysis using a pilot plant, Desalination, 167 (2004) 359, doi: 10.1016/j.desal.2004.06.146.
  46. N.X. Tsiourtis, Desalination Water Costing-Financing Institutions Views, in: Int. Conf. Desalin. Costing, Lemesos, Cyprus, 2004, pp. 282–293.
  47. S. El-Ghzizel, H. Zeggar, M. Tahaikt, F. Tiyal, A. Elmidaoui, M. Taky, Nanofiltration process combined with electrochemical disinfection for drinking water production: feasibility study and optimization, J. Water Process Eng., 36 (2020) 101225, doi: 10.1016/j.jwpe.2020.101225.
  48. F. Elazhar, M. Tahaikt, A. Achatei, F. Elmidaoui, M. Taky, F. El-Hannouni, I. Laaziz, S. Jariri, M. El-Amrani, A. Elmidaoui, Economical evaluation of the fluoride removal by nanofiltration, Desalination, 249 (2009) 154–157.
  49. CSEC, Plan National de l’Eau, Conseil Supérieur de l’Eau et du Climat (National Water Plan, Higher Council for Water and Climate), Ministry of Equipment, Transport, Logistics and Water, Morocco, 2014.
  50. CES, La gouvernance par la gestion intégrée des ressources en eau au Maroc (Governance through integrated water resources management in Morocco) page:30, World Bank Document, USA Washington, DC 20433, 2014.
  51. Gestion de la Rareté de l’Eau en Milieu Urbain au Maroc (Management of Water Scarcity in Urban Areas in Morocco), ONEE, Morocco, 2017. Available at: http://documents1. worldbank.org/curated/en/488091516133312338/pdf/summaryreport. pdf (accessed September 17, 2020).
  52. H. Zidouri, Desalination of Morocco and presentation of design and operation of the Laayoune seawater reverse osmosis plant, Desalination, 131 (2000) 137–145.
  53. Office National de l’Électricité et de l’Eau potable, branche eau (National Office of Electricity and Drinking Water, Water Branch, Ministry of Energy, Mines and Environnement, Morocco,), 2017. Available at: http://documents1.worldbank. org/curated/pt/488091516133312338/pdf/summary-report.pdf (accessed September 7, 2020).
  54. H. Boulahfa, S. Belhamidi, F. Elhannouni, M. Taky, A. El Fadil, A. Elmidaoui, Demineralization of brackish surface water by reverse osmosis: the first experience in Morocco, J. Environ. Chem. Eng., 7 (2019) 102937, doi: 10.1016/j.jece.2019.102937.
  55. Conventions pour la réalisation de la plus grande unité mutualisée de dessalement de l’eau de mer pour l’irrigation et l’alimentation en eau potable de la région de Souss Massa (Agreements for the construction of the largest shared seawater desalination. Available at: https://www.bankofafrica.ma/fr/ conventions-pour-la-réalisation-de-la-plus-grande-unitémutualisée- de-dessalement-de-leau-de-mer-pour-lirrigationet- lalimentation-en-eau-potable-de-la-région-de-souss-massa (accessed September 7, 2020, Bank of Africa, BMCE Group, Morocco).
  56. M. Kettani, P. Bandelier, Techno-economic assessment of solar energy coupling with large-scale desalination plant: the case of Morocco, Desalination. 494 (2020) 114627, doi: 10.1016/j. desal.2020.114627.
  57. Office chérifien des phosphates, Programme de dessalement de l’eau de mer (Seawater desalination program) (OCP), OCP, Morocco, 2016.
  58. Our Water Sustainability Program, OCP Group, Morocco. Available at: https://www.ocpgroup.ma/water-program (accessed September 24, 2020).
  59. I.C. Karagiannis, P.G. Soldatos, Water desalination cost literature: review and assessment, Desalination, 223 (2008) 448–456.
  60. R. Borsani, S. Rebagliati, Fundamentals and costing of MSF desalination plants and comparison with other technologies, Desalination, 182 (2005) 29–37.
  61. S.A. Avlonitis, Operational water cost and productivity improvements for small-size RO desalination plants, Desalination, 142 (2002) 295–304.
  62. A. Hafez, S. El-Manharawy, Economics of seawater RO desalination in the Red Sea region, Egypt. Part 1. A case study, Desalination. 153 (2003) 335–347.
  63. I.S. Jaber, M.R. Ahmed, Technical and economic evaluation of brackish groundwater desalination by reverse osmosis (RO) process, 165 (2004) 209–213.
  64. D. Sambrailo, J. Ivić, A. Krstulović, Economic evaluation of the first desalination plant in Croatia, Desalination, 179 (2005) 339–344.
  65. T. Mezher, H. Fath, Z. Abbas, A. Khaled, Techno-economic assessment and environmental impacts of desalination technologies, Desalination, 266 (2011) 263–273.
  66. H. Dach, Comparison of nanofiltration and reverse osmosis processes for a selective desalination of brackish water feeds, Eng. Sci., 2008. https://tel.archives-ouvertes.fr/tel-00433513 (accessed February 17, 2020).
  67. K. Walha, R. Ben Amar, L. Firdaous, F. Quéméneur, P. Jaouen, Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison, Desalination, 207 (2007) 95–106.
  68. G. Vaseghi, A. Ghassemi, J. Loya, Characterization of reverse osmosis and nanofiltration membranes: effects of operating conditions and specific ion rejection, Desal. Water Treat., 57 (2016) 23461–23472.
  69. B. van der Bruggen, K. Everaert, D. Wilms, C. Vandecasteele, Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: rejection properties and economic evaluation, J. Membr. Sci., 193 (2001) 239–248.
  70. S. El-Ghzizel, H. Jalté, B. Bachiri, A. Zdeg, F. Tiyal, M. Hafsi, M. Taky, A. Elmidaoui, Demineralization of underground water by a nanofiltration plant coupled with a photovoltaic and wind energy system, Desal. Water Treat., 130 (2018) 28–36.
  71. A.R. Costa, M.N. de Pinho, Performance and cost estimation of nanofiltration for surface water treatment in drinking water production, Desalination, 196 (2006) 55–65.
  72. R.A. Bergman, Cost of membrane softening in Florida, J. Am. Water Works Assn., 88 (1996) 32–43.
  73. A. Gorenflo, D. Velázquez-Padrón, F.H. Frimmel, Nanofiltration of a German groundwater of high hardness and NOM content: performance and costs, Desalination, 151 (2003) 253–265.
  74. Ministry of Energy, Mines and Environment. Available at: https://www.mem.gov.ma/en/Pages/secteur.aspx?e=2 (accessed September 24, 2020).
  75. Présentation (presentation), MASEN (Moroccan Agency For Solar Energy), Morocco. Available at: http://www.masen.ma/ index.php/fr/presentation (accessed September 25, 2020).
  76. AMEE, Cadre réglementaire, AMEE: Agence Marocaine pour l’Efficacité Energétique, Morocco. Available at: https://www. amee.ma/fr/cadre-reglementaire (accessed September 25, 2020).
  77. M.P. Shahabi, A. McHugh, M. Anda, G. Ho, Environmental life cycle assessment of seawater reverse osmosis desalination plant powered by renewable energy, Renewable Energy, 67 (2014) 53–58.
  78. W. He, Y. Wang, M. Hasan Shaheed, Stand-alone seawater RO (reverse osmosis) desalination powered by PV (photovoltaic) and PRO (pressure retarded osmosis), Energy, 86 (2015) 423–435.
  79. I. El Saliby, Y. Okour, H.K. Shon, J. Kandasamy, I.S. Kim, Desalination plants in Australia, review and facts, Desalination, 247 (2009) 1–14.
  80. M.A.M. Khan, S. Rehman, F.A. Al-Sulaiman, A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: a review, Renewable Sustainable Energy Rev., 97 (2018) 456–477.
  81. S. El-Ghzizel, H. Jalte, H. Zeggar, M. Zait, S. Belhamidi, F. Tiyal, M. Hafsi, M. Taky, A. Elmidaoui, Autopsy of nanofiltration membrane of a decentralized demineralization plant, Membr. Water Treat., 10 (2019) 277–286.
  82. A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energypowered desalination processes, Renewable Sustainable Energy Rev., 24 (2013) 343–356.
  83. V.G. Gude, N. Nirmalakhandan, S. Deng, Renewable and sustainable approaches for desalination, Renewable Sustainable Energy Rev., 14 (2010) 2641–2654.
  84. R. Semiat, Energy issues in desalination processes, Environ. Sci. Technol., 42 (2008) 8193–8201.
  85. S.A. Avlonitis, K. Kouroumbas, N. Vlachakis, Energy consumption and membrane replacement cost for seawater RO desalination plants, Desalination, 157 (2003) 151–158.
  86. B. Peñate, L. García-Rodríguez, Energy optimisation of existing SWRO (seawater reverse osmosis) plants with ERT (energy recovery turbines): technical and thermoeconomic assessment, Energy, 36 (2011) 613–626.
  87. M. Wilf, L. Awerbuch, C. Bartels, M. Mickley, G. Pearce, N. Voutchkov, The Guidebook to Membrane Desalination Technology: Reverse Osmosis, Nanofiltration and Hybrid Systems Process, Design, Applications and Economics, Balaban Publishers, 2006. Available at: https://www.amazon. com/Guidebook-Membrane-Desalination-Technology- Nanofiltration/dp/0866890653 (accessed September 12, 2020).
  88. N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309 (2013) 197–207.
  89. F.E. Ahmed, R. Hashaikeh, N. Hilal, Fouling control in reverse osmosis membranes through modification with conductive carbon nanostructures, Desalination, 470 (2019) 114118, doi: 10.1016/j.desal.2019.114118.
  90. M. Badruzzaman, N. Voutchkov, L. Weinrich, J.G. Jacangelo, Selection of pretreatment technologies for seawater reverse osmosis plants: a review, Desalination, 449 (2019) 78–91.
  91. N.H. Lee, G. Amy, J.P. Croué, H. Buisson, Identification and understanding of fouling in low-pressure membrane (MF/ UF) filtration by natural organic matter (NOM), Water Res., 38 (2004) 4511–4523.
  92. S.G. Salinas-Rodriguez, G.L. Amy, J.C. Schippers, M.D. Kennedy, The Modified Fouling Index ultrafiltration constant flux for assessing particulate/colloidal fouling of RO systems, Desalination, 365 (2015) 79–91.
  93. S. Li, H. Winters, L.O. Villacorte, Y. Ekowati, A.H. Emwas, M.D. Kennedy, G.L. Amy, Compositional similarities and differences between transparent exopolymer particles (TEPs) from two marine bacteria and two marine algae: significance to surface biofouling, Mar. Chem., 174 (2015) 131–140.
  94. R. Valladares Linares, L. Fortunato, N.M. Farhat, S.S. Bucs, M. Staal, E.O. Fridjonsson, M.L. Johns, J.S. Vrouwenvelder, T. Leiknes, Mini-review: novel non-destructive in situ biofilm characterization techniques in membrane systems, Desal. Water Treat., 57 (2016) 22894–22901.
  95. S.G. Yiantsios, A.J. Karabelas, An assessment of the Silt Density Index based on RO membrane colloidal fouling experiments with iron oxide particles, Desalination, 151 (2003) 229–238.
  96. P.S. Goh, W.J. Lau, M.H.D. Othman, A.F. Ismail, Membrane fouling in desalination and its mitigation strategies, Desalination, 425 (2018) 130–155.
  97. T. Tran, B. Bolto, S. Gray, M. Hoang, E. Ostarcevic, An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant, Water Res., 41 (2007) 3915–3923.
  98. M. Karime, S. Bouguecha, B. Hamrouni, RO membrane autopsy of Zarzis brackish water desalination plant, Desalination, 220 (2008) 258–266.
  99. L. Fortunato, A.H. Alshahri, A.S.F. Farinha, I. Zakzouk, S. Jeong, T.O. Leiknes, Fouling investigation of a full-scale seawater reverse osmosis desalination (SWRO) plant on the Red Sea: membrane autopsy and pretreatment efficiency, Desalination, 496 (2020) 114536, doi: 10.1016/j.desal.2020.114536.
  100. S.F. Anis, R. Hashaikeh, N. Hilal, Reverse osmosis pretreatment technologies and future trends: a comprehensive review, Desalination, 452 (2019) 159–195.
  101. L. Henthorne, B. Boysen, State-of-the-art of reverse osmosis desalination pretreatment, Desalination, 356 (2015) 129–139.
  102. J.P. van der Hoek, J.A.M.H. Hofman, P.A.C. Bonné, M.M. Nederlof, H.S. Vrouwenvelder, RO treatment: selection of a pretreatment scheme based on fouling characteristics and operating conditions based on environmental impact, Desalination, 127 (2000) 89–101.
  103. J. Kavitha, M. Rajalakshmi, A.R. Phani, M. Padaki, Pretreatment processes for seawater reverse osmosis desalination systems—a review, J. Water Process Eng., 32 (2019) 100926, doi: 10.1016/j.jwpe.2019.100926.
  104. N. Voutchkov, Considerations for selection of seawater filtration pretreatment system, Desalination, 261 (2010) 354–364.
  105. I. Sola, J.L. Sánchez-Lizaso, P.T. Muñoz, E. García-Bartolomei, C.A. Sáez, D. Zarzo, Assessment of the requirements within the environmental monitoring plans used to evaluate the environmental impacts of desalination plants in Chile, Water (Switzerland), 11 (2019) 1–17.
  106. N. Melián-Martel, J.J. Sadhwani Alonso, S.O. Pérez Báez, Reuse and management of brine in sustainable SWRO desalination plants, Desal. Water Treat., 51 (2013) 560–566.
  107. A. Panagopoulos, K.-J. Haralambous, M. Loizidou, Desalination brine disposal methods and treatment technologies - a review, Sci. Total Environ., 693 (2019) 133545, doi: 10.1016/j.scitotenv.2019.07.351.
  108. M.L. Cambridge, A. Zavala-Perez, G.R. Cawthray, J. Mondon, G.A. Kendrick, Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia Australis, Mar. Pollut. Bull., 115 (2017) 252–260.
  109. Mickley, Associates, Desalination and Water Purification Research and Development Program Report No. 207, U.S. Department of the Interior, Bureau of Reclamation, Technical Service Center, Denver, Colorado, 2018. Available at: https://www.usbr.gov/research/dwpr/DWPR_Reports.html (accessed September 11, 2020).
  110. S. Eslamian, Urban Water Reuse Handbook, Handbook of Engineering Hydrology (2014) from CRC Press (Chemical Rubber Company), USA, 2016. Available at: https://doi. org/10.1201/b19646.