References

  1. P.S. Song, W. Li, B. Sun, Z. Nie, L.Z. Bu, Y.S. Wang, Recent development on comprehensive utilization of Salt Lake resources, Chin. J. Inorg. Chem., 27 (2011) 801–815.
  2. X.M. Wang, J.D. Miller, F.Q. Cheng, H.G. Cheng, Potash flotation practice for carnallite resources in the Qinghai Province, Miner. Eng., 66–68 (2014) 33–39.
  3. M.P. Zheng, Y.S. Zhang, X.F. Liu, W. Qi, F.J. Kong, Z. Nie, Progress and prospects of Salt Lake research in China, Acta Geol. Sin., 90 (2016) 1195–1235.
  4. P. Gamazo, S.A. Bea, M.W. Saaltink, J. Carrera, C. Ayora, Modeling the interaction between evaporation and chemical composition in a natural saline system, J. Hydrol., 401 (2011) 154–164.
  5. X.K. Wang, Y. Zhou, L. Li, T.C. Gao, N. Tang, Modelling the natural evaporation of the concentrated seawater after desalinized, Appl. Mech. Mater., 713–715 (2015) 2989–2992.
  6. A. Salman, M.A. Al-Shammiri, New computational intelligence model for predicting evaporation rates for saline water, Desalination, 214 (2007) 273–286.
  7. Y.T. Liu, J.F. Zhang, T. Li, Y.B. Shen, H. Hu, Salt water evaporation test and model correction, J. Irrig. Drain., 37 (2018) 116–120.
  8. H.J. Liu, S. Cohen, J. Tanny, J.H. Lemcoff, G.H. Huang, Estimation of banana (Musa sp.) plant transpiration using a standard 20 cm pan in a greenhouse, Irrig. Drain. Syst., 22 (2008) 311–323.
  9. R.L. Mason, R.F. Gunst, J.L. Hess, Statistical Design and Analysis of Experiments: With Applications to Engineering and Science, Wiley, 2003 doi: 10.1002/0471458503. Available at: https://onlinelibrary.wiley.com/doi/book/10.1002/0471458503.
  10. T. Lau, N. Harbourne, M.J. Oruña-Concha, Optimization of enzyme-assisted extraction of ferulic acid from sweet corn cob by response surface methodology, J. Sci. Food Agric., 100 (2020) 1479–1485.
  11. L. Peng, Optimization of ethanol fermentation with reducing sugars from Camellia (Camellia oleifera) seed meal using response surface methodology, Therm. Sci., 22 (2018) 639–647.
  12. P.A. Sylajakumari, R. Ramakrishnasamy, G. Palaniappan, R. Murugan, Multi-response optimization of end milling parameters for Al-Zn-Mg/SiC Co-continuous composite using response surface methodology, Mater. Sci., 25 (2019) 471–477.
  13. M. Asadizadeh, H. Masoumi, H. Roshan, A. Hedayat, Coupling taguchi and response surface methodologies for the efficient characterization of jointed rocks’ mechanical properties, Rock Mech. Rock Eng., 52 (2019) 4807–4819.
  14. Y. Lecun, Bengio, G. Hinton, Deep learning, Nature, 521 (2015) 436–444.
  15. Y.C. Wu, J.W. Feng, Development and application of artificial neural network, Wireless Pers. Commun., 102 (2018) 1645–1656.
  16. M. van Gerven, S. Bohte, Artificial neural network s as models of neural information processing, Front. Comput. Neurosci., 11 (2017) 114.
  17. A. Erdil, E. Arcaklioglu, The prediction of meteorological variables using artificial neural network, Neural Comput. Appl., 22 (2013) 1677–1683.
  18. J.Y. Liu, G.F. Zhao, C. Duan, Y.F. Xu, J. Zhao, T. Deng, Effective improvement of activated sludge dewaterability conditioning with seawater and brine, Chem. Eng. J., 168 (2011) 1112–1119.
  19. N. Asanjarani, M. Bagtash, J. Zolgharnein, A comparison between Box–Behnken design and artificial neural network: modeling of removal of Phenol Red from water solutions by nanocobalt hydroxide, J. Chemom., 34 (2020) e3283, doi: 10.1002/cem.3283.
  20. L. Li, Y. Zhou, X.K. Wang, T.C. Gao, N. Tang, Study on the relationship between meteorological conditions and brine evaporation rate, Appl. Mech. Mater., 713–715 (2015) 2985–2988
  21. M.A. Al-Shammiri, Evaporation rate as a function of water salinity, Desalination, 150 (2002) 189–203.