References

  1. H.S. Ibrahim, T.S. Jamil, E.Z. Hegazy, Application of zeolite prepared from Egyptian kaolin for the removal of heavy metals: II. Isotherm models, J. Hazard. Mater., 182 (2010) 842–847.
  2. S.M.A. Jubouri, H.A. Sabbar, H.A. Lafta, B.I. Waisi, Effect of synthesis parameters on the formation 4A zeolite crystals: characterization analysis and heavy metals uptake performance study for water treatment, Desal. Water Treat., 165 (2019) 290–300.
  3. S.M. Shaheen, F.I. Eissa, K.M. Ghanem, H.M.G.E. Din, F.S.A. Anany, Heavy metals removal from aqueous solutions and wastewaters by using various byproducts, J. Environ. Manage., 128 (2013) 514–521.
  4. S.M.A. Jubouri, S.M. Holmes, Immobilization of cobalt ions using hierarchically porous 4A zeolite-based carbon composites: ion-exchange and solidification, J. Water Process Eng., 33 (2020) 101059, doi: 10.1016/j.jwpe.2019.101059.
  5. S. Kocaoba, Adsorption of Cd(II), Cr(III) and Mn(II) on natural sepiolite, Desalination, 244 (2009) 24–30.
  6. A. Adamczuk, D. Kołodyńska, Equilibrium, thermodynamic and kinetic studies on removal of chromium, copper, zinc and arsenic from aqueous solutions onto fly ash coated by chitosan, Chem. Eng. J., 274 (2015) 200–212.
  7. D. Ferhat, D. Nibou, M. Elhadj, S. Amokrane, Adsorption of Ni2+ ions onto NaX and NaY zeolites: equilibrium, kinetics, intra crystalline diffusion and thermodynamic studies, Iran. J. Chem. Chem. Eng., 38 (2019) 63–81.
  8. A.H. Sulaymon, B.A. Abdulmajeed, A.B. Salman, Electrochemical removal of cadmium from simulated wastewater using a smooth rotating cylinder electrode, Desal. Water Treat., 54 (2015) 2557–2563.
  9. A.H. Sulaymon, B.A. Abdulmajeed, A.B. Salman, Removal of cadmium from simulated wastewater by using stainless steel concentric tubes electrochemical reactor, Desal. Water Treat., 68 (2017) 220–225.
  10. H. Javadian, F. Ghorbani, H.A. Tayebi, S.H. Asl, Study of the adsorption of Cd(II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies, Arabian J. Chem., 8 (2015) 837–849.
  11. R.T. Hadi, A.B. Salman, S. Nabeel, S.A. Soud, Recovery of lead from simulated wastewater by using stainless steel rotating cylinder electrode electrochemical reactor, Desal. Water Treat., 99 (2017) 266–271.
  12. M.R. Awual, M.M. Hasan, G.E. Eldesoky, M.A. Khaleque, M.M. Rahman, M. Naushad, Facile mercury detection and removal from aqueous media involving, Chem. Eng. J., 290 (2016) 243–251.
  13. M. Ahmaruzzaman, Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals, Adv. Colloid Interface Sci., 166 (2011) 36–59.
  14. M.A. Shavandi, Z. Haddadian, M.H.S. Ismail, N. Abdullah, Z.Z. Abidin, Removal of Fe(III), Mn(II) and Zn(II) from palm oil mill effluent (POME) by natural zeolite, J. Taiwan Inst. Chem. Eng., 43 (2012) 750–759.
  15. Z.A. Husoon, Investigation biosorption potential of copper and lead from industrial wastewater using orange and lemon peels, J. Al-Nahrain Univ., 16 (2013) 173–179.
  16. M. Kapur, M.K. Mondal, Competitive sorption of Cu(II) and Ni(II) ions from aqueous solutions: kinetics, thermodynamics and desorption studies, J. Taiwan Inst. Chem. Eng., 45 (2014) 1803–1813.
  17. J.A. Alexander, A. Surajudeen, E.U. Aliyu, A.U. Omeiza, M. Abbas, A. Zaini, Multi metals column adsorption of lead(II), cadmium(II) and manganese(II) onto natural bentonite clay, Water Sci. Technol., 76 (2017) 2232–2241.
  18. V.C.T. Costodes, H. Fauduet, C. Porte, A. Delacroix, Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris, J. Hazard. Mater., 105 (2003) 121–142.
  19. R. Han, W. Zou, H. Li, Y. Li, J. Shi, Copper(II) and lead(II) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite, J. Hazard. Mater., 137 (2006) 934–942.
  20. W. Qiu, Y. Zheng, Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash, Chem. Eng. J., 145 (2009) 483–488.
  21. B. Alyüz, S. Veli, Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins, J. Hazard. Mater., 167 (2009) 482–488.
  22. G. Sharma, B. Thakur, A. Kumar, S. Sharma, M. Naushad, F.J. Stadler, Atrazine removal using chitin-Cl-poly(acrylamideco-itaconic acid) nanohydrogel: isotherms and pH responsive nature, Carbohydr. Polym., 241 (2020) 116258, doi: 10.1016/j.carbpol.2020.116258.
  23. M. Zhang, P. Gu, Z. Zhang, J. Liu, L. Dong, G. Zhang, Effective, rapid and selective adsorption of radioactive Sr2+ from aqueous solution by a novel metal sulfide adsorbent, Chem. Eng. J., 351 (2018) 668–677.
  24. A. Mittal, M. Naushad, G. Sharma, Z.A. Alothman, S.M. Wabaidur, M. Alam, Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb(II) metal from aqueous medium, Desal. Water Treat., 57 (2015) 21863–21869.
  25. X. Tan, M. Fang, X. Wang, Preparation of TiO2/multiwalled carbon nanotube composites and their applications in photocatalytic reduction of Cr(VI) study, J. Nanosci. Nanotechnol., 8 (2008) 5624–5631.
  26. G. Sharma, M. Naushad, Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/ zirconium oxide composite: Isotherm and kinetic modelling, J. Mol. Liq., 310 (2020) 113025, doi: 10.1016/j.molliq.2020.113025.
  27. T.W. Chen, A. Sivasamy Vasantha, S.M. Chen, D.A. Al Farraj, M.S. Elshikh, R.M. Alkufeidy, M.M.A. Khulaifi, Sonochemical synthesis and fabrication of honeycomb like zirconium dioxide with chitosan modified electrode for sensitive electrochemical determination of anti-tuberculosis (TB) drug, Ultrason. Sonochem., 59 (2019) 104718, doi: 10.1016/j.ultsonch.2019.104718.
  28. A.M.E. Kamash, Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations, J. Hazard. Mater., 151 (2008) 432–445.
  29. Inamuddin, M. Luqman, Ion Exchange Technology I, 2012, Springer, Netherlands.
  30. D.A.H.D. Rio, S.M.A. Jubouri, S.M. Holmes, Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams, Chim. Oggi Chem. Today, 35 (2017) 26–29.
  31. V.H. Montoya, M.A.P. Cruz, D.I.M. Castillo, M.R.M. Virgen, Competitive adsorption of dyes and heavy metals on zeolitic structures, J. Environ. Manage., 116 (2013) 213–221.
  32. S.M.A. Jubouri, N.A. Curry, S.M. Holmes, Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste, J. Hazard. Mater., 320 (2016) 241–251.
  33. L.R. Rad, A. Momeni, B.F. Ghazani, M. Irani, M. Mahmoudi, B. Noghreh, Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent, Chem. Eng. J., 256 (2014) 119–127.
  34. A.A.A. Rahmani, S.K.A. Attafi, S.K.A. Nasri, Z.W. Jasim, Hierarchical structures incorporating carbon and zeolite to remove radioactive contamination, Iraqi J. Sci., 61 (2020) 1944–1951.
  35. S.M.A. Jubouri, The static aging effect on the seedless synthesis of different ranges Faujasite-type zeolite Y at various factors, Iraqi J. Chem. Pet. Eng., 20 (2019) 7–13.
  36. M.N. Abbas, F.S. Abbas, H.H. Nussrat, S.N. Hussein, Synthesis of promoted catalyst from Iraqi rice husk used as a raw material for treating tannery wastewater, Aust. J. Basic Appl. Sci., 7 (2013) 511–528.
  37. R. Abid, G. Delahay, H. Tounsi, Preparation of LTA, HS and FAU/EMT intergrowth zeolites from aluminum scraps and industrial metasilicate, J. Mater. Cycles Waste Manage., 21 (2019) 1188–1196.
  38. L.M.G. Rodríguez, N.A.P. Durán, M.L. Cancino, G.A.F. Escamilla, D.A.D.H.D. Río, Synthesis of zeolite LTA using an agroindustrial residue as the SiO2 precursor and evaluating its effectiveness in the removal of copper ions from water, Desal. Water Treat., 144 (2019) 156–165.
  39. A. Iqbal, H. Sattar, R. Haider, S. Munir, Synthesis and characterization of pure phase zeolite 4A from coal fly ash, J. Cleaner Prod., (2019) 258–267.
  40. S.M.A. Jubouri, Preparation of Highly-Reactive Silica from Phragmites (Common Reed) and Using It as an Inexpensive Silica Source to Prepare Y Zeolite, Patent 6291, 2020.
  41. S.M.A. Jubouri, S.I.A. Batty, S.M. Holmes, Using the ash of common water reeds as a silica source for producing high purity ZSM-5 zeolite microspheres, Microporous Mesoporous Mater., 316 (2021) 110953, doi: 10.1016/j.micromeso.2021.110953.
  42. H.S. Sherry, The ion-exchange properties of zeolites. I. Univalent ion-exchange in synthetic faujasite, J. Phys. Chem., 70 (1966) 1158–1168.
  43. A. Maes, A. Cremers, Ion exchange of synthetic zeolite X and Y with Co2+, Ni2+, Cu2+ and Zn2+ ions, J. Chem. Soc., Faraday Trans. 1 F, 71 (1975) 265–277.
  44. C.N. Mulligan, R.N. Yong, B.F. Gibbs, An evaluation of technologies for the heavy metal remediation of dredged sediments, J. Hazard. Mater., 85 (2001) 145–163.
  45. M.J. Harbottle, A.A. Tabbaa, C.W. Evans, A comparison of the technical sustainability of in situ stabilisation/solidification with disposal to landfill, J. Hazard. Mater., 141 (2007) 430–440.
  46. B.C. McLellan, R.P. Williams, J. Lay, A.V. Riessen, G.D. Corder, Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement, J. Cleaner Prod., 19 (2011) 1080–1090.
  47. C. Shi, R. Spence, Designing of cement-based formula for solidification/stabilization of hazardous, radioactive, and mixed wastes, Crit. Rev. Environ. Sci. Technol., 34 (2004) 391–417.
  48. S.M.A. Jubouri, Synthesis of hierarchically porous ZSM-5 zeolite by self-assembly induced by aging in the absence of seedingassistance, Microporous Mesoporous Mater., 303 (2020) 110296, doi: 10.1016/j.micromeso.2020.110296.
  49. S.M.A. Jubouri, D.A.D.H.D. Rio, A. Alfutimie, N.A. Curry, S.M. Holmes, Understanding the seeding mechanism of hierarchically porous zeolite/carbon composites, Microporous Mesoporous Mater., 268 (2018) 109–116.
  50. S.M.A. Jubouri, B.I. Waisi, S.M. Holmes, Rietveld texture refinement analysis of linde type A zeolite from X-ray diffraction data, J. Eng. Sci. Technol., 13 (2018) 4066–4077.
  51. M.H. Alhassani, S.M.A. jubouri, H.A.A. Jendeel, Stabilization of phenol trapped by agricultural waste: a study of the influence of ambient temperature on the adsorbed phenol, Desal. Water Treat., 187 (2020) 266–276.
  52. A. Nouri, M. Jafari, M. Kazemimoghadam, T. Mohammadi, Effects of hydrothermal parameters on the synthesis of nanocrystalline zeolite NaY, Clays Clay Miner., 60 (2012) 610–615.
  53. X. Zhang, D. Tang, M. Zhang, R. Yang, Synthesis of NaX zeolite: Influence of crystallization time, temperature and batch molar ratio SiO2/Al2O3 on the particulate properties of zeolite crystals, Powder Technol., 235 (2013) 322–328.
  54. Z. Hajizadeh, K. Valadi, R.T. Ledari, A. Maleki, Convenient Cr(VI) removal from aqueous samples: executed by a promising clay-based catalytic system, magnetized by Fe3O4 nanoparticles and functionalized with humic acid, ChemistrySelect, 5 (2020) 2441–2448.
  55. S. Ahmed, S. Chughtai, M.A. Keane, The removal of cadmium and lead from aqueous solution by ion exchange with NaY zeolite, Sep. Purif. Technol., 13 (1998) 57–64.
  56. M.I. Ahamed, A.M. Asiri, Applications of Ion Exchange Materials in the Environment, Springer International Publishing, Switzerland, 2019.
  57. R. Nightingale, Phenomenological theory of ion solvation. Effective radii of hydrated ions, J. Phys. Chem., 63 (1959) 1381–1387.
  58. Database of Ionic Radii. Available at: http://Abulafia.Mt.Ic. Ac.Uk/Shannon/Radius.Php?Element=Hg
  59. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr., 32 (1976) 751–767.
  60. G. Sharma, D. Pathania, M. Naushad, N.C. Kothiyal, Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: efficient removal of toxic metal ions from water, Chem. Eng. J., 251 (2014) 413–421.
  61. S. Khandaker, Y. Toyohara, G.C. Saha, M.R. Awual, T. Kuba, Development of synthetic zeolites from bio-slag for cesium adsorption: kinetic, isotherm and thermodynamic studies, J. Water Process Eng., 33 (2020) 101055, doi: 10.1016/j. jwpe.2019.101055.
  62. D. Nibou, H. Mekatel, S. Amokrane, M. Barkat, M. Trari, Adsorption of Zn2+ ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies, J. Hazard. Mater., 173 (2010) 637–646.
  63. S. Bai, M. Chu, L. Zhou, Z. Chang, C. Zhang, B. Liu, Removal of heavy metals from aqueous solutions by X-type zeolite prepared from combination of oil shale ash and coal fly ash, Energy Sources Part A, (2019) 1–11, doi: 10.1080/15567036.2019.1661549.