References
- Z. Fu, S. Xi, The effects of heavy metals on human metabolism,
Toxicol. Mech. Methods, 30 (2020) 167–176.
- M. Kumar, A. Puri, A review of permissible limits of drinking
water, Indian J. Occup. Environ. Med., 16 (2012) 40–44.
- S. Chowdhury, M.A.J. Mazumder, O.A. Attas, T. Husain, Heavy
metals in drinking water: occurrences, implications, and future
needs in developing countries. Sci. Total Environ., 569 (2016)
476–488.
- H. Demiral, C. Güngör, Adsorption of copper(II) from aqueous
solutions on activated carbon prepared from grape bagasse,
J. Cleaner Prod., 124 (2016) 103–113.
- M. Karnib, A. Kabbani, H. Holail, Z. Olama, Heavy metals
removal using activated carbon, silica and silica activated
carbon composite, Energy Procedia, 50 (2014) 113–120.
- B. Yu, Y. Zhang, A.S. Shukla, S. Shyam, K.L. Dorris, The removal
of heavy metal from aqueous solutions by sawdust adsorption
— removal of copper, J. Hazard. Mater., 80 (2000) 33–42.
- W. Wu, Y. Yang, H. Zhou, T. Ye, Z. Huang, R. Liu, Y. Kuang,
Highly efficient removal of Cu(II) from aqueous solution by
using graphene oxide, Water Air Soil Pollut., 224 (2013) 1372
(1–8), doi: 10.1007/s11270-012-1372-5.
- K.C. Khulbe, T. Matsuura, Removal of heavy metals and
pollutants by membrane adsorption techniques, Appl. Water
Sci., 8 (2018) 19 (1–30), doi: 10.1007/s13201-018-0661-6.
- B.A. Rashdi, Heavy metals removal using adsorption and
nanofiltration techniques, Sep. Purif. Rev., 40 (2011) 209–259.
- Z. Cao, Microscopic mechanism of membrane fouling in microfiltration,
Desal. Water Treat., 57 (2015) 6652–6657.
- J.T. Jung, J.F. Kim, H.H. Wang, E.D. Nicolo, E. Drioli,
Y.M. Lee, Understanding the non-solvent induced phase
separation (NIPS) effect during the fabrication of microporous
PVDF membranes via thermally induced phase separation
(TIPS), J. Membr. Sci., 514 (2016) 250–263.
- P. Sakellariou, R.C. Rowe, E.F.T. White, A study of the
leaching/retention of water-soluble polymers in blends with
ethylcellulose using torsional braid analysis, J. Controlled
Release, 7 (1988) 147–157.
- C. Xing, M. Zhao, L. Zhao, J. You, X. Cao, Y. Li, Ionic liquid modified
poly(vinylidene fluoride): crystalline structures, miscibility,
and physical properties, Polym. Chem., 4 (2013) 5726–5734.
- R. Bodmeier, O. Paeratakul, leaching of water-soluble
plasticizers from polymeric films prepared from aqueous
colloidal polymer dispersions, Drug Dev. Ind. Pharm., 18 (1992)
1865–1882.
- M. Safarpour, A. Khataee, V. Vatanpour, Preparation of a novel
polyvinylidene fluoride (PVDF) ultrafiltration membrane
modified with reduced graphene oxide/titanium dioxide (TiO2)
nanocomposite with enhanced hydrophilicity and antifouling
properties, Ind. Eng. Chem. Res., 53 (2014) 13370–13382.
- N. Chen, L. Hong, Surface phase morphology and composition
of the casting films of PVDF–PVP blend, Polymer, 43 (2002)
429–1436.
- I.A. Safo, M. Werheid, C. Dosche, M. Oezaslan, The role of
polyvinylpyrrolidone (PVP) as a capping and structuredirecting
agent in the formation of Pt nanocubes, Nano Adv.,
1 (2019) 3095–3106.
- M. Nasir, H. Matsumoto, M. Minagawa, A. Tanioka, T. Danno,
H. Horibe, Preparation of porous PVDF nanofiber from PVDF/PVP blend by electrospray deposition, Polym. J., 39 (2007)
1060–1064.
- C. Hying, E. Staude, The influence of polyvinylpyrrolidone
(PVP) in polyetherimid/PVP blend membranes upon vapor
separation, J. Membr. Sci., 144 (1998) 251–257.
- C. Xing, L. Zhao, J. You, W. Dong, X. Cao, Y. Li, Impact of
ionic liquid-modified multiwalled carbon nanotubes on the
crystallization behavior of poly(vinylidene fluoride), J. Phys.
Chem. B, 116 (2012) 8312–8320.
- J.J. Qin, Y.M. Cao, L.S. Lee, Development of a LCST membrane
forming system for cellulose acetate ultrafiltration hollow fiber,
Sep. Purif. Technol., 42 (2005) 291–295.
- I.C. Kim, K.H. Lee, Effect of poly (ethylene glycol) 200 on the
formation of a polyetherimide asymmetric membrane and its
performance in aqueous solvent mixture permeation, J. Membr.
Sci., 230 (2004) 183–188.
- Q.Z. Zheng, Y.N. Yang, Rheological and thermodynamic
variation in polysulfone solution by PEG introduction and its
effect on kinetics of membrane formation via phase-inversion
process, J. Membr. Sci., 279 (2006) 230–237.
- Q.Z. Zheng, P. Wang, Y.N. Yang, D.J. Cui, The relationship
between porosity and kinetics parameter of membrane
formation in PSF ultrafiltration membrane, J. Membr. Sci.,
286 (2006) 7–11.
- H.J. Kim, R.K. Tyagi, A.E. Fonda, K. Jonasson, The kinetic
study for asymmetric membrane formation via phase-inversion
process, J. Appl. Polym. Sci., 62 (1996) 621–629.
- S. Manna, A.K. Nandi, Piezoelectric β polymorph in
poly(vinylidene fluoride)-functionalized multiwalled carbon
nanotube nanocomposite films, J. Phys. Chem. C, 111 (2007)
14670–14680.
- S.K. Ghosh, W. Rahman, T.R. Middya, S. Sen, D. Mandal,
Improved breakdown strength and electrical energy storage
performance of gamma-poly(vinylidene fluoride)/unmodified
montmorillonite clay nano-dielectrics, Nanotechnology,
27 (2016) 215401–09, doi: 10.1088/0957-4484/27/21/215401.
- W.Z. Lang, Y.J. Guo, L.F. Chu, Evolution of the precipitation
kinetics, morphologies, permeation performances, and
crystallization behaviors of polyvinylidene fluoride (PVDF)
hollow fiber membrane by adding different molecular weight
polyvinylpyrrolidone (PVP), Polym. Adv. Technol., 22 (2011)
1720–1730.
- P. Martins, A.C. Lopes, S.L. Mendez, Electroactive phases of
poly (vinylidene fluoride): determination, processing and
applications, Prog. Polym. Sci., 39 (2014) 683–706.
- Y. Diao, K.E. Whaley, M.E. Helgeson, M.A. Woldeyes,
P.S. Doyle, A.S. Myerson, T.A. Hatton, B.L. Trout, Gel-induced
selective crystallization of polymorphs, J. Am. Chem. Soc.,
134 (2012) 673–684.