References

  1. Z. Fu, S. Xi, The effects of heavy metals on human metabolism, Toxicol. Mech. Methods, 30 (2020) 167–176.
  2. M. Kumar, A. Puri, A review of permissible limits of drinking water, Indian J. Occup. Environ. Med., 16 (2012) 40–44.
  3. S. Chowdhury, M.A.J. Mazumder, O.A. Attas, T. Husain, Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci. Total Environ., 569 (2016) 476–488.
  4. H. Demiral, C. Güngör, Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse, J. Cleaner Prod., 124 (2016) 103–113.
  5. M. Karnib, A. Kabbani, H. Holail, Z. Olama, Heavy metals removal using activated carbon, silica and silica activated carbon composite, Energy Procedia, 50 (2014) 113–120.
  6. B. Yu, Y. Zhang, A.S. Shukla, S. Shyam, K.L. Dorris, The removal of heavy metal from aqueous solutions by sawdust adsorption — removal of copper, J. Hazard. Mater., 80 (2000) 33–42.
  7. W. Wu, Y. Yang, H. Zhou, T. Ye, Z. Huang, R. Liu, Y. Kuang, Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide, Water Air Soil Pollut., 224 (2013) 1372 (1–8), doi: 10.1007/s11270-012-1372-5.
  8. K.C. Khulbe, T. Matsuura, Removal of heavy metals and pollutants by membrane adsorption techniques, Appl. Water Sci., 8 (2018) 19 (1–30), doi: 10.1007/s13201-018-0661-6.
  9. B.A. Rashdi, Heavy metals removal using adsorption and nanofiltration techniques, Sep. Purif. Rev., 40 (2011) 209–259.
  10. Z. Cao, Microscopic mechanism of membrane fouling in microfiltration, Desal. Water Treat., 57 (2015) 6652–6657.
  11. J.T. Jung, J.F. Kim, H.H. Wang, E.D. Nicolo, E. Drioli, Y.M. Lee, Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS), J. Membr. Sci., 514 (2016) 250–263.
  12. P. Sakellariou, R.C. Rowe, E.F.T. White, A study of the leaching/retention of water-soluble polymers in blends with ethylcellulose using torsional braid analysis, J. Controlled Release, 7 (1988) 147–157.
  13. C. Xing, M. Zhao, L. Zhao, J. You, X. Cao, Y. Li, Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties, Polym. Chem., 4 (2013) 5726–5734.
  14. R. Bodmeier, O. Paeratakul, leaching of water-soluble plasticizers from polymeric films prepared from aqueous colloidal polymer dispersions, Drug Dev. Ind. Pharm., 18 (1992) 1865–1882.
  15. M. Safarpour, A. Khataee, V. Vatanpour, Preparation of a novel polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with reduced graphene oxide/titanium dioxide (TiO2) nanocomposite with enhanced hydrophilicity and antifouling properties, Ind. Eng. Chem. Res., 53 (2014) 13370–13382.
  16. N. Chen, L. Hong, Surface phase morphology and composition of the casting films of PVDF–PVP blend, Polymer, 43 (2002) 429–1436.
  17. I.A. Safo, M. Werheid, C. Dosche, M. Oezaslan, The role of polyvinylpyrrolidone (PVP) as a capping and structuredirecting agent in the formation of Pt nanocubes, Nano Adv., 1 (2019) 3095–3106.
  18. M. Nasir, H. Matsumoto, M. Minagawa, A. Tanioka, T. Danno, H. Horibe, Preparation of porous PVDF nanofiber from PVDF/PVP blend by electrospray deposition, Polym. J., 39 (2007) 1060–1064.
  19. C. Hying, E. Staude, The influence of polyvinylpyrrolidone (PVP) in polyetherimid/PVP blend membranes upon vapor separation, J. Membr. Sci., 144 (1998) 251–257.
  20. C. Xing, L. Zhao, J. You, W. Dong, X. Cao, Y. Li, Impact of ionic liquid-modified multiwalled carbon nanotubes on the crystallization behavior of poly(vinylidene fluoride), J. Phys. Chem. B, 116 (2012) 8312–8320.
  21. J.J. Qin, Y.M. Cao, L.S. Lee, Development of a LCST membrane forming system for cellulose acetate ultrafiltration hollow fiber, Sep. Purif. Technol., 42 (2005) 291–295.
  22. I.C. Kim, K.H. Lee, Effect of poly (ethylene glycol) 200 on the formation of a polyetherimide asymmetric membrane and its performance in aqueous solvent mixture permeation, J. Membr. Sci., 230 (2004) 183–188.
  23. Q.Z. Zheng, Y.N. Yang, Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process, J. Membr. Sci., 279 (2006) 230–237.
  24. Q.Z. Zheng, P. Wang, Y.N. Yang, D.J. Cui, The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane, J. Membr. Sci., 286 (2006) 7–11.
  25. H.J. Kim, R.K. Tyagi, A.E. Fonda, K. Jonasson, The kinetic study for asymmetric membrane formation via phase-inversion process, J. Appl. Polym. Sci., 62 (1996) 621–629.
  26. S. Manna, A.K. Nandi, Piezoelectric β polymorph in poly(vinylidene fluoride)-functionalized multiwalled carbon nanotube nanocomposite films, J. Phys. Chem. C, 111 (2007) 14670–14680.
  27. S.K. Ghosh, W. Rahman, T.R. Middya, S. Sen, D. Mandal, Improved breakdown strength and electrical energy storage performance of gamma-poly(vinylidene fluoride)/unmodified montmorillonite clay nano-dielectrics, Nanotechnology, 27 (2016) 215401–09, doi: 10.1088/0957-4484/27/21/215401.
  28. W.Z. Lang, Y.J. Guo, L.F. Chu, Evolution of the precipitation kinetics, morphologies, permeation performances, and crystallization behaviors of polyvinylidene fluoride (PVDF) hollow fiber membrane by adding different molecular weight polyvinylpyrrolidone (PVP), Polym. Adv. Technol., 22 (2011) 1720–1730.
  29. P. Martins, A.C. Lopes, S.L. Mendez, Electroactive phases of poly (vinylidene fluoride): determination, processing and applications, Prog. Polym. Sci., 39 (2014) 683–706.
  30. Y. Diao, K.E. Whaley, M.E. Helgeson, M.A. Woldeyes, P.S. Doyle, A.S. Myerson, T.A. Hatton, B.L. Trout, Gel-induced selective crystallization of polymorphs, J. Am. Chem. Soc., 134 (2012) 673–684.