References

  1. G. Kaur, S. Pavia, Physical properties and microstructure of plastic aggregate mortars made with acrylonitrile-butadienestyrene (ABS), polycarbonate (PC), polyoxymethylene (POM) and ABS/PC blend waste, J. Build. Eng., 31 (2020) 101341, doi: 10.1016/j.jobe.2020.101341.
  2. M.A.P. Rojas, M.J.M. Conde, F.P. Gálvez, P.R.D. Hita, Reuse of CD and DVD wastes as reinforcement in gypsum plaster plates, Materials, 13 (2020) 989, doi: 10.3390/ma13040989.
  3. R. Rajarao, I. Mansuri, R. Dhunna, R. Khanna, V. Sahajwalla, Characterisation of gas evolution and char structural change during pyrolysis of waste CDs, J. Anal. Appl. Pyrolysis, 105 (2014) 14–22.
  4. Z. Noorimotlagh, S.A. Mirzaee, S.S. Martinez, S. Alavi, M. Ahmadi, N. Jaafarzadeh, Adsorption of textile dye in activated carbons prepared from DVD and CD wastes modified with multi-wall carbon nanotubes: equilibrium isotherms, kinetics and thermodynamic study, Chem. Eng. Res. Des., 141 (2019) 290–301.
  5. R. Rajarao, I. Mansuri, R. Dhunna, R. Khanna, V. Sahajwalla, Study of structural evolution of chars during rapid pyrolysis of waste CDs at different temperatures, Fuel, 134 (2014) 17–25.
  6. S. Singh, Y. Lei, A. Schober, Direct extraction of carbonyl from waste polycarbonate with amines under environmentally friendly conditions: scope of waste polycarbonate as a carbonylating agent in organic synthesis, RSC Adv., 5 (2015) 3454–3460.
  7. H. Albatrni, H. Qiblawey, M.H.E. Naas, Comparative study between adsorption and membrane technologies for the removal of mercury, Sep. Purif. Technol., 257 (2021) 117833, doi: 10.1016/j.seppur.2020.117833.
  8. H. Zhang, S. Pap, M.A. Taggart, K.G. Boyd, N.A. James, S.W. Gibb, A review of the potential utilisation of plastic waste as adsorbent for removal of hazardous priority contaminants from aqueous environments, Environ. Pollut., 258 (2020) 113698, doi: 10.1016/j.envpol.2019.113698.
  9. A. Ahmad, J.A. Siddique, M.A. Laskar, R. Kumar, S.H.M. Setapar, A. Khatoon, R.A. Shiekh, New generation Amberlite XAD resin for the removal of metal ions: a review, J. Environ. Sci., 31 (2015) 104–123.
  10. J. Choma, M. Marszewski, L. Osuchowski, J. Jagiello, A. Dziura, M. Jaroniec, Adsorption properties of activated carbons prepared from waste CDs and DVDs, ACS Sustainable Chem. Eng., 3 (2015) 733–742.
  11. S.M. Albukhari, M.A. Hussein, M.A.A. Rahman, H.M. Marwani, Highly selective heteroaromatic sulfur containing polyamides for Hg2+ environmental remediation, Des. Monomers Polym., 23 (2020) 25–39.
  12. M. Naushad, Surfactant assisted nano-composite cation exchanger: development, characterization and applications for the removal of toxic Pb2+ from aqueous medium, Chem. Eng. J., 235 (2014) 100–108.
  13. E. Ghasemi, A. Heydari, M. Sillanpää, Superparamagnetic Fe3O4@ EDTA nanoparticles as an efficient adsorbent for simultaneous removal of Ag(I), Hg(II), Mn(II), Zn(II), Pb(II) and Cd(II) from water and soil environmental samples, Microchem. J., 131 (2017) 51–56.
  14. G. Sharma, A. Kumar, M. Naushad, A. Kumar, H. Ala’a, P. Dhiman, A.A. Ghfar, F.J. Stadler, M. Khan, Photoremediation of toxic dye from aqueous environment using monometallic and bimetallic quantum dots based nanocomposites, J. Cleaner Prod., 172 (2018) 2919–2930.
  15. M. Naushad, Z.A. Al-Othman, Separation of toxic Pb2+ metal from aqueous solution using strongly acidic cation-exchange resin: analytical applications for the removal of metal ions from pharmaceutical formulation, Desal. Water Treat., 53 (2015) 2158–2166.
  16. G. Sharma, D. Pathania, M. Naushad, N. Kothiyal, Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: efficient removal of toxic metal ions from water, Chem. Eng. J., 251 (2014) 413–421.
  17. S.W. Khor, Y.K. Lee, M.R.B. Abas, K.S. Tay, Application of chalcone-based dithiocarbamate derivative incorporated sol–gel for the removal of Hg(II) ion from water, J. Sol-Gel Sci. Technol., 82 (2017) 834–845.
  18. M. Kumar, A.K. Singh, M. Sikandar, Biosorption of Hg(II) from aqueous solution using algal biomass: kinetics and isotherm studies, Heliyon, 6 (2020) e03321, doi: 10.1016/j.heliyon.2020. e03321.
  19. E. Khanniri, M. Yousefi, A.M. Mortazavian, N. Khorshidian, S. Sohrabvandi, M. Arab, M.R. Koushki, Effective removal of lead(II) using chitosan and microbial adsorbents: response surface methodology (RSM), Int. J. Biol. Macromol., 178 (2021) 53–62.
  20. M.E. Mahmoud, A.E. Abdou, S.B. Ahmed, Conversion of waste styrofoam into engineered adsorbents for efficient removal of cadmium, lead and mercury from water, ACS Sustainable Chem. Eng., 4 (2016) 819–827.
  21. T. Sahan, F. Erol, S. Yilmaz, Mercury(II) adsorption by a novel adsorbent mercapto-modified bentonite using ICP-OES and use of response surface methodology for optimization, Microchem. J., 138 (2018) 360–368.
  22. A. Alipour, S. Zarinabadi, A. Azimi, M. Mirzaei, Adsorptive removal of Pb(II) ions from aqueous solutions by thioureafunctionalized magnetic ZnO/nanocellulose composite: optimization by response surface methodology (RSM), Int. J. Biol. Macromol., 151 (2020) 124–135.
  23. S.A. Abdallah, K.S. Tay, K.H. Low, Feasibility of mercury(II) ion removal by nitrated polycarbonate derived from waste optical discs, Int. J. Environ. Sci. Technol., 17 (2020) 4161–4170.
  24. V.V. Delinder, D.R. Wheeler, L.J. Small, M.T. Brumbach, E.D. Spoerke, I. Henderson, G.D. Bachand, Simple, benign, aqueous-based amination of polycarbonate surfaces, ACS Appl. Mater. Interfaces, 7 (2015) 5643–5649.
  25. N. Saranya, E. Nakeeran, G. Nandagopal, N. Selvaraju, Optimization of adsorption process parameters by response surface methodology for hexavalent chromium removal from aqueous solutions using Annona reticulata Linn peel microparticles, Water Sci. Technol., 75 (2017) 2094–2107.
  26. N.D. Mu’azu, S.A. Haladu, N. Jarrah, M. Zubair, M.H. Essa, S.A. Ali, Polyaspartate extraction of cadmium ions from contaminated soil: evaluation and optimization using central composite design, J. Hazard. Mater., 342 (2018) 58–68.
  27. M. Iqbal, Z. Ali, M.A. Qamar, A. Ali, F. Hussain, M. Abbas, J. Nisar, Nickel adsorption onto polyurethane ethylene and vinyl acetate sorbents, Water Sci. Technol., 76 (2017) 219–235.
  28. M. Alimohammadi, Z. Saeedi, B. Akbarpour, H. Rasoulzadeh, K. Yetilmezsoy, M.A. Al-Ghouti, M. Khraisheh, G. McKay, Adsorptive removal of arsenic and mercury from aqueous solutions by eucalyptus leaves, Water Air Soil Pollut., 228 (2017) 429, doi: 10.1007/s11270-017-3607-y.
  29. X. Yao, H. Wang, Z. Ma, M. Liu, X. Zhao, D. Jia, Adsorption of Hg(II) from aqueous solution using thiourea functionalized chelating fiber, Chin. J. Chem. Eng., 24 (2016) 1344–1352.
  30. Y.J. Shi, T. Zhang, H.Q. Ren, A. Kruse, R.F. Cui, Polyethylene imine modified hydrochar adsorption for chromium(VI) and nickel(II) removal from aqueous solution, Bioresour. Technol., 247 (2018) 370–379.
  31. G. Sharma, M. Naushad, Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/ zirconium oxide composite: isotherm and kinetic modelling, J. Mol. Liq., 310 (2020) 113025, doi: 10.1016/j.molliq.2020.113025.
  32. T.A. Saleh, Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica-multiwall carbon nanotubes, Environ. Sci. Pollut. Res., 22 (2015) 16721–16731.
  33. R. Farzana, R. Rajarao, B.R. Bhat, V. Sahajwalla, Performance of an activated carbon supercapacitor electrode synthesised from waste Compact Discs (CDs), J. Ind. Eng. Chem., 65 (2018) 387–396.
  34. C. Larosa, N. Patra, M. Salerno, L. Mikac, R.M. Meri, M. Ivanda, Preparation and characterization of polycarbonate/multiwalled carbon nanotube nanocomposites, Beilstein J. Nanotechnol., 8 (2017) 2026–2031.
  35. C. Zimmerer, L. Ziegler, G. Heinrich, G. Steiner, Time resolved characterization of the solid-state reaction between polycarbonate and primary amine, Eur. Polym. J., 98 (2018) 313–320.
  36. T.M. Alslaibi, I. Abustan, M.A. Ahmad, A.A. Foul, Application of response surface methodology (RSM) for optimization of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ removal from aqueous solution using microwaved olive stone activated carbon, J. Chem. Technol. Biotechnol., 88 (2013) 2141–2151.
  37. W. Yuan, J. Cheng, H. Huang, S. Xiong, J. Gao, J. Zhang, S. Feng, Optimization of cadmium biosorption by Shewanella putrefaciens using a Box-Behnken design, Ecotox. Environ. Saf., 175 (2019) 138–147.
  38. M. Anbia, S. Amirmahmoodi, Removal of Hg(II) and Mn(II) from aqueous solution using nanoporous carbon impregnated with surfactants, Arabian J. Chem., 9 (2016) S319–S325.
  39. C. Jeon, K.L. Solis, H.R. An, Y. Hong, A.D. Igalavithana, Y.S. Ok, Sustainable removal of Hg(II) by sulfur-modified pine-needle biochar, J. Hazard. Mater., 388 (2020) 122048, doi: 10.1016/j. jhazmat.2020.122048.
  40. N.F. Ahmad, M.A. Kamboh, H.R. Nodeh, S.N.B.A. Halim, S. Mohamad, Synthesis of piperazine functionalized magnetic sporopollenin: a new organic-inorganic hybrid material for the removal of lead(II) and arsenic(III) from aqueous solution, Environ. Sci. Pollut. Res., 24 (2017) 21846–21858.
  41. M.A. Yaari, T.A. Saleh, O. Saber, Removal of mercury from polluted water by a novel composite of polymer carbon nanofiber: kinetic, isotherm, and thermodynamic studies, RSC Adv., 11 (2021) 380–389.
  42. A. Ahmad, A. Khatoon, S.H.M. Setapar, R. Kumar, M. Rafatullah, Chemically oxidized pineapple fruit peel for the biosorption of heavy metals from aqueous solutions, Desal. Water Treat., 57 (2016) 6432–6442.
  43. X. Lu, J. Jiang, K. Sun, J. Wang, Y. Zhang, Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions, Mar. Pollut. Bull., 78 (2014) 69–76.
  44. K. Johari, A.S. Alias, N. Saman, S.T. Song, H. Mat, Removal performance of elemental mercury by low-cost adsorbents prepared through facile methods of carbonisation and activation of coconut husk, Waste Manage. Res., 33 (2015) 81–88.
  45. S. Bao, K. Li, P. Ning, J. Peng, X. Jin, L. Tang, Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nanoadsorbents: behaviours and mechanisms, Appl. Surf. Sci., 393 (2017) 457–466.