References

  1. M.A. Mazhar, N.A. Khan, S. Ahmed, A.H. Khan, A. Hussain, Rahisuddin, F. Changani, M. Yousefi, S. Ahmadi, V. Vambol, Chlorination disinfection by-products in municipal drinking water – a review, J. Cleaner Prod., 273 (2020) 123159, doi: 10.1016/j.jclepro.2020.123159.
  2. V. Gomez-Alvarez, S. Pfaller, J.G. Pressman, D.G. Wahman, R.P. Revetta, Resilience of microbial communities in a simulated drinking water distribution system subjected to disturbances: role of conditionally rare taxa and potential implications for antibiotic-resistant bacteria, Environ. Sci. Water Res. Technol., 2 (2016) 645–657.
  3. X. Lei, Y. Lei, X. Zhang, X. Yang, Treating disinfection by-products with UV or solar irradiation and in UV advanced oxidation processes: a review, J. Hazard. Mater., 408 (2020) 124435, doi: 10.1016/j.jhazmat.2020.124435.
  4. E.D. Wagner, M.J. Plewa, CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: an updated review, J. Environ. Sci. (China), 58 (2017) 64–76.
  5. W. Chu, T. Chu, T. Bond, E. Du, Y. Guo, N. Gao, Impact of persulfate and ultraviolet light activated persulfate preoxidation on the formation of trihalomethanes, haloacetonitriles and halonitromethanes from the chlor(am)ination of three antibiotic chloramphenicols, Water Res., 93 (2016) 48–55.
  6. T. Bond, J. Huang, M.R. Templeton, N. Graham, Occurrence and control of nitrogenous disinfection by-products in drinking water – a review, Water Res., 45 (2011) 4341–4354.
  7. B.G. Oliver, Dihaloacetonitriles in drinking-water – algae and fulvic-acid as precursors, Environ. Sci. Technol., 17 (1983) 80–83.
  8. J. Liu, H. Lujan, B. Dhungana, W.C. Hockaday, C.M. Sayes, G.P. Cobb, V.K. Sharma, Ferrate(VI) pretreatment before disinfection: an effective approach to controlling unsaturated and aromatic halo-disinfection by-products in chlorinated and chloraminated drinking waters, Environ. Int., 138 (2020) 105641, doi: 10.1016/j.envint.2020.105641.
  9. X. Sun, M. Chen, D. Wei, Y. Du, Research progress of disinfection and disinfection by-products in China, J. Environ. Sci. (China), 81 (2019) 52–67.
  10. M.H. Banna, S. Imran, A. Francisque, H. Najjaran, R. Sadiq, M. Rodriguez, M. Hoorfar, Online drinking water quality monitoring: review on available and emerging technologies, Crit. Rev. Env. Sci. Technol., 44 (2014) 1370–1421.
  11. A.L. Srivastav, N. Patel, V.K. Chaudhary, Disinfection by-products in drinking water: occurrence, toxicity and abatement, Environ. Pollut., 267 (2020) 115474, doi: 10.1016/j. envpol.2020.115474.
  12. J. Liu, M. Zhao, C. Duan, P. Yue, T. Li, Removal characteristics of dissolved organic matter and membrane fouling in ultrafiltration and reverse osmosis membrane combined processes treating the secondary effluent of wastewater treatment plant, Water Sci. Technol., 83 (2021) 689–700.
  13. N. Beauchamp, C. Bouchard, C. Dorea, M. Rodriguez, Ultraviolet absorbance monitoring for removal of DBP-precursor in waters with variable quality: enhanced coagulation revisited, Sci. Total Environ., 717 (2020) 137225, doi: 10.1016/j. scitotenv.2020.137225.
  14. L. Wei, K. Wen, J. Lu, J. Ma, Quantification of low molecular weight oxidation by-products produced from real filtered water after catalytic ozonation with different pathways, J. Hazard. Mater., 405 (2021) 124674, doi: 10.1016/j.jhazmat.2020.124674.
  15. E. Bei, Y. Shu, S. Li, X. Liao, J. Wang, X. Zhang, C. Chen, S. Krasner, Occurrence of nitrosamines and their precursors in drinking water systems around mainland China, Water Res., 98 (2016) 168–175.
  16. W.H. Glaze, J.W. Kang, Advanced oxidation processes. Description of a kinetic model for the oxidation of hazardous materials in aqueous media with ozone and hydrogen peroxide in a semibatch reactor, Ind. Eng. Chem. Res., 28 (1989) 1573–1580.
  17. G. Cerreta, M.A. Roccamante, P. Plaza-Bolaños, I. Oller, A. Aguera, S. Malato, L. Rizzo, Advanced treatment of urban wastewater by UV-C/free chlorine process: micro-pollutants removal and effect of UV-C radiation on trihalomethanes formation, Water Res., 169 (2020) 115220, doi: 10.1016/j. watres.2019.115220.
  18. Y. Lei, S. Cheng, N. Luo, X. Yang, T. An, Rate constants and mechanisms of the reactions of Cl and Cl2•– with trace organic contaminants, Environ. Sci. Technol., 53 (2019) 11170–11182.
  19. Y.-Q. Gao, J. Zhang, C. Li, F.-X. Tian, N.-Y. Gao, Comparative evaluation of metoprolol degradation by UV/chlorine and UV/H2O2 processes, Chemosphere, 243 (2020) 125325, doi: 10.1016/j. chemosphere.2019.125325.
  20. K. Song, M. Mohseni, F. Taghipour, Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review, Water Res., 94 (2016) 341–349.
  21. D.B. Miklos, R. Hartl, P. Michel, K.G. Linden, J.E. Drewes, U. Hubner, UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents, Water Res., 136 (2018) 169–179.
  22. R. Hazime, Q.H. Nguyen, C. Ferronato, A. Salvador, F. Jaber, J.M. Chovelon, Comparative study of imazalil degradation in three systems: UV/TiO2, UV/K2S2O8 and UV/TiO2/K2S2O8, Appl. Catal., B, 144 (2014) 286–291.
  23. J.S. Benítez, C.M. Rodríguez, A.F. Casas, Disinfection by-products (DBPs) in drinking water supply systems: a systematic review, Phys. Chem. Earth. A/B/C/, (2021) 102987 (in Press), doi: 10.1016/j.pce.2021.102987.
  24. M.J. Plewa, Y. Kargalioglu, D. Vankerk, R.A. Minear, E.D. Wagner, Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products, Environ. Mol. Mutagen., 40 (2002) 134–142.
  25. S.S. Marais, E.J. Ncube, T.A.M. Msagati, B.B. Mamba, T.T.I. Nkambule, Assessment of trihalomethane (THM) precursors using specific ultraviolet absorbance (SUVA) and molecular size distribution (MSD), J. Water Process Eng., 27 (2019) 143–151.
  26. M.G. Muellner, E.D. Wagner, K. McCalla, S.D. Richardson, Y.T. Woo, M.J. Plewa, Haloacetonitriles vs. regulated haloacetic acids: are nitrogen-containing DBPs more toxic?, Environ. Sci. Technol., 41 (2007) 645–651.
  27. I.A. Ike, Y. Lee, J. Hur, Impacts of advanced oxidation processes on disinfection by-products from dissolved organic matter upon post-chlor(am)ination: a critical review, Chem. Eng. J., 375 (2019) 121929, doi: 10.1016/j.cej.2019.121929.
  28. W.H. Chu, N.Y. Gao, Y. Deng, Formation of haloacetamides during chlorination of dissolved organic nitrogen aspartic acid, J. Hazard. Mater., 173 (2010) 82–86.
  29. Y. Zhang, W. Chu, D. Yao, D. Yin, Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: formation potential and integrated toxicity, J. Environ. Sci. (China), 58 (2017) 322–330.
  30. B. Dalmacija, D. Krčmar, T. Đurkić, M. Watson, A. Tubić, J. Agbaba, J.M. Jazić, Effect of photochemical advanced oxidation processes on the formation potential of emerging disinfection by-products in groundwater from part of the Pannonian Basin, Water Supply, 19 (2019) 1388–1395.
  31. P.C. Singer, Humic substances as precursors for potentially harmful disinfection by-products, Water Sci. Technol., 40 (1999) 25–30.
  32. Z. Fan, H. Yang, S. Li, X. Yu, Tracking and analysis of DBP precursors’ properties by fluorescence spectrometry of dissolved organic matter, Chemosphere, 239 (2020) 124790, doi: 10.1016/j.chemosphere.2019.124790.
  33. F. Mohd Zainudin, H. Abu Hasan, S.R. Sheikh Abdullah, An overview of the technology used to remove trihalomethane (THM), trihalomethane precursors, and trihalomethane formation potential (THMFP) from water and wastewater, J. Ind. Eng. Chem., 57 (2018) 1–14.
  34. A.M. Tugulea, R. Aranda-Rodriguez, D. Berube, M. Giddings, F. Lemieux, J. Hnatiw, L. Dabeka, F. Breton, The influence of precursors and treatment process on the formation of Iodo- THMs in Canadian drinking water, Water Res., 130 (2018) 215–223.
  35. S. Tak, B.P. Vellanki, Natural organic matter as precursor to disinfection by-products and its removal using conventional and advanced processes: state of the art review, J. Water Health, 16 (2018) 681–703.
  36. Y. Xiang, M. Gonsior, P. Schmitt-Kopplin, C. Shang, Influence of the UV/H2O2 advanced oxidation process on dissolved organic matter and the connection between elemental composition and disinfection by-product formation, Environ. Sci. Technol., 54 (2020) 14964–14973.
  37. B.S. Karnik, S.H. Davies, M.J. Baumann, S.J. Masten, The effects of combined ozonation and filtration on disinfection by-product formation, Water Res., 39 (2005) 2839–2850.
  38. X.X. Wang, B.M. Liu, M.F. Lu, Y.P. Li, Y.Y. Jiang, M.X. Zhao, Z.X. Huang, Y. Pan, H.F. Miao, W.Q. Ruan, Characterization of algal organic matter as precursors for carbonaceous and nitrogenous disinfection by-products formation: comparison with natural organic matter, J. Environ. Manage., 282 (2021) 111951, doi: 10.1016/j.jenvman.2021.111951.
  39. J.L. Lin, A.R. Ika, Minimization of halogenated DBP precursors by enhanced PACl coagulation: the impact of organic molecule fraction changes on DBP precursors destabilization with Al hydrates, Sci. Total Environ., 703 (2020) 134936, doi: 10.1016/j. scitotenv.2019.134936.
  40. H.V. Lutze, R. Bakkour, N. Kerlin, C. von Sonntag, T.C. Schmidt, Formation of bromate in sulfate radical based oxidation: mechanistic aspects and suppression by dissolved organic matter, Water Res., 53 (2014) 370–377.
  41. Y. Liu, Y. Yang, S. Pang, L. Zhang, J. Ma, C. Luo, C. Guan, J. Jiang, Mechanistic insight into suppression of bromate formation by dissolved organic matters in sulfate radical-based advanced oxidation processes, Chem. Eng. J., 333 (2018) 200–205.
  42. J.Y. Fang, C. Shang, Bromate formation from bromide oxidation by the UV/persulfate process, Environ. Sci. Technol., 46 (2012) 8976–8983.
  43. Z. Wang, N. An, Y. Shao, N. Gao, E. Du, B. Xu, Experimental and simulation investigations of UV/persulfate treatment in presence of bromide: effects on degradation kinetics, formation of brominated disinfection by-products and bromate, Sep. Purif. Technol., 242 (2020) 116767, doi: 10.1016/j.seppur.2020.116767.
  44. C. Luo, J. Gao, D. Wu, J. Jiang, Y. Liu, W. Zhou, J. Ma, Oxidation of 2,4-bromophenol by UV/PDS and formation of bromate and brominated products: a comparison to UV/H2O2, Chem. Eng. J., 358 (2019) 1342–1350.
  45. Q. Zhang, W.F. Kuang, L.Y. Liu, K. Li, K.H. Wong, A.T. Chow, P.K. Wong, Trihalomethane, haloacetonitrile, and chloral hydrate formation potentials of organic carbon fractions from sub-tropical forest soils, J. Hazard. Mater., 172 (2009) 880–887.
  46. M. Sgroi, F.G.A. Vagliasindi, S.A. Snyder, P. Roccaro, N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: a review on formation and removal, Chemosphere, 191 (2018) 685–703.
  47. H. Chang, C. Chen, G. Wang, Identification of potential nitrogenous organic precursors for C-, N-DBPs and characterization of their DBPs formation, Water Res., 45 (2011) 3753–3764.
  48. H. Hu, H. Ma, L. Ding, J. Geng, K. Xu, H. Huang, Y. Zhang, H. Ren, Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: a comparative study, Sci. Total Environ., 569–570 (2016) 1359–1368.
  49. P.A. Alaba, Y.M. Sani, S.F. Olupinla, W.M.W. Daud, I.Y. Mohammed, C.C. Enweremadu, O.O. Ayodele, Toward N-nitrosamines free water: formation, prevention, and removal, Crit. Rev. Env. Sci. Technol., 47 (2018) 2448–2489.
  50. H. Xiang, Y. Shao, N. Gao, X. Lu, N. An, W. Chu, Removal of β-cyclocitral by UV/persulfate and UV/chlorine process: degradation kinetics and DBPs formation, Chem. Eng. J., 382 (2020) 122659, doi: 10.1016/j.cej.2019.122659.
  51. D.B. Miklos, W.L. Wang, K.G. Linden, J.E. Drewes, U. Hübner, Comparison of UV-AOPs (UV/H2O2, UV/PDS and UV/chlorine) for TOrC removal from municipal wastewater effluent and optical surrogate model evaluation, Chem. Eng. J., 362 (2019) 537–547.
  52. B.K. Mayer, E. Daugherty, M. Abbaszadegan, Evaluation of the relationship between bulk organic precursors and disinfection by-product formation for advanced oxidation processes, Chemosphere, 121 (2015) 39–46.
  53. J.L. Weishaar, G.R. Aiken, B.A. Bergamaschi, M.S. Fram, R. Fujii, K. Mopper, Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon, Environ. Sci. Technol., 37 (2003) 4702–4708.
  54. M. Sillanpaa, M.C. Ncibi, A. Matilainen, Advanced oxidation processes for the removal of natural organic matter from drinking water sources: a comprehensive review, J. Environ. Manage, 208 (2018) 56–76.
  55. L.-C. Hua, S.-J. Chao, K. Huang, C. Huang, Characteristics of low and high SUVA precursors: relationships among molecular weight, fluorescence, and chemical composition with DBP formation, Sci. Total Environ., 727 (2020) 138638, doi: 10.1016/j. scitotenv.2020.138638.
  56. V. Yargeau, C. Leclair, Impact of operating conditions on decomposition of antibiotics during ozonation: a review, Ozone: Sci. Eng., 30 (2008) 175–188.
  57. W. Qi, H. Zhang, C. Hu, H. Liu, J. Qu, Effect of ozonation on the characteristics of effluent organic matter fractions and subsequent associations with disinfection by-products formation, Sci. Total Environ., 610–611 (2018) 1057–1064.
  58. A.D. Dotson, V.O. Keen, D. Metz, K.G. Linden, UV/H2O2 treatment of drinking water increases post-chlorination DBP formation, Water Res., 44 (2010) 3703–3713.
  59. B. Sun, Y. Wang, Y. Xiang, C. Shang, Influence of pre-ozonation of DOM on micropollutant abatement by UV-based advanced oxidation processes, J. Hazard. Mater., 391 (2020) 122201, doi: 10.1016/j.jhazmat.2020.122201.
  60. K.M.S. Hansen, A. Spiliotopoulou, W.A. Cheema, H.R. Andersen, Effect of ozonation of swimming pool water on formation of volatile disinfection by-products – a laboratory study, Chem. Eng. J., 289 (2016) 277–285.
  61. Q. Lin, F. Dong, C. Li, J. Cui, Disinfection by-product formation from algal organic matters after ozonation or ozone combined with activated carbon treatment with subsequent chlorination, J. Environ. Sci., 104 (2021) 233–241.
  62. P.D. Nguyen, T.D.Q. Le, N.H. Nguyen, K.T. Tran, M.T. Nguyen, K.A. Huynh, Reducing disinfection by-product precursors and chlorine consuming substances by a special integration of biofiltration and ozonation: a pilot study, J. Water Process Eng., 37 (2020) 101419, doi: 10.1016/j.jwpe.2020.101419.
  63. C.V. Rekhate, J.K. Srivastava, Recent advances in ozone-based advanced oxidation processes for treatment of wastewater – a review, Chem. Eng. J. Advances, 3 (2020) 100031, doi: 10.1016/j.ceja.2020.100031.
  64. G. Cheng, Z. Li, L. Sun, Y. Li, J. Fu, Application of microwave/electrodeless discharge ultraviolet/ozone sterilization technology in water reclamation, Process Saf. Environ. Prot., 138 (2020) 148–156.
  65. M. Petronijević, J. Agbaba, S. Ražić, J. Molnar Jazić, A. Tubić, M. Watson, B. Dalmacija, Fate of bromine-containing disinfection by-products precursors during ozone and ultraviolet-based advanced oxidation processes, International Journal of Environmental Science and Technology, 16 (2018) 171–180.
  66. W.A. Cheema, K.M.S. Kaarsholm, H.R. Andersen, Combined UV treatment and ozonation for the removal of by-product precursors in swimming pool water, Water Res., 110 (2017) 141–149.
  67. S. Srithep, S. Phattarapattamawong, Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3), Chemosphere, 176 (2017) 25–31.
  68. J. Agbaba, J.M. Jazić, A. Tubić, M. Watson, S. Maletić, M.K. Isakovski, B. Dalmacija, Oxidation of natural organic matter with processes involving O3, H2O2 and UV light: formation of oxidation and disinfection by-products, RSC Adv., 6 (2016) 86212–86219.
  69. Y. Ren, J. Kong, J. Xue, X. Shi, H. Li, J. Qiao, Y. Lu, Effects of ozonation on the activity of endotoxin and its inhalation toxicity in reclaimed water, Water Res., 154 (2019) 153–161.
  70. W.A. Cheema, H.R. Andersen, K.M.S. Kaarsholm, Improved DBP elimination from swimming pool water by continuous combined UV and ozone treatment, Water Res., 147 (2018) 214–222.
  71. M. Nihemaiti, D.B. Miklos, U. Hubner, K.G. Linden, J.E. Drewes, J.P. Croue, Removal of trace organic chemicals in wastewater effluent by UV/H2O2 and UV/PDS, Water Res., 145 (2018) 487–497.
  72. M.-Y. Lee, W.-L. Wang, Y. Du, Q.-Y. Wu, N. Huang, Z.-B. Xu, H.-Y. Hu, Comparison of UV/H2O2 and UV/PS processes for the treatment of reverse osmosis concentrate from municipal wastewater reclamation, Chem. Eng. J., 388 (2020) 124260, doi: 10.1016/j.cej.2020.124260.
  73. S. Tak, B.P. Vellanki, Applicability of advanced oxidation processes in removing anthropogenically influenced chlorination disinfection by-product precursors in a developing country, Ecotoxicol. Environ. Saf., 186 (2019) 109768, doi: 10.1016/j.ecoenv.2019.109768.
  74. F. Qian, M. He, J. Wu, H. Yu, L. Duan, Insight into removal of dissolved organic matter in post pharmaceutical wastewater by coagulation-UV/H2O2, J. Environ. Sci., 76 (2019) 329–338.
  75. C.S. Lee, A.K. Venkatesan, H.W. Walker, C.J. Gobler, Impact of groundwater quality and associated by-product formation during UV/hydrogen peroxide treatment of 1,4-dioxane, Water Res., 173 (2020) 115534, doi: 10.1016/j.watres.2020.115534.
  76. H.R. Sindelar, M.T. Brown, T.H. Boyer, Evaluating UV/H2O2, UV/percarbonate, and UV/perborate for natural organic matter reduction from alternative water sources, Chemosphere, 105 (2014) 112–118.
  77. S. Ding, F. Wang, W. Chu, C. Fang, Y. Pan, S. Lu, N. Gao, Using UV/H2O2 pre-oxidation combined with an optimised disinfection scenario to control CX3R-type disinfection by-product formation, Water Res., 167 (2019) 115096, doi: 10.1016/j.watres.2019.115096.
  78. A. Szczuka, N. Huang, J.A. MacDonald, A. Nayak, Z. Zhang, W.A. Mitch, N-Nitrosodimethylamine formation during UV/hydrogen peroxide and UV/chlorine advanced oxidation process treatment following reverse osmosis for potable reuse, Environ. Sci. Technol., 54 (2020) 15465–15475.
  79. S.L. Roback, K.P. Ishida, Y.-H. Chuang, Z. Zhang, W.A. Mitch, M.H. Plumlee, Pilot UV-AOP comparison of UV/hydrogen peroxide, UV/free chlorine, and UV/monochloramine for the removal of N-nitrosodimethylamine (NDMA) and NDMA precursors, ACS EST Water, 1 (2021) 396–406.
  80. Z. Zhang, Y.H. Chuang, A. Szczuka, K.P. Ishida, S. Roback, M.H. Plumlee, W.A. Mitch, Pilot-scale evaluation of oxidant speciation, 1,4-dioxane degradation and disinfection by-product formation during UV/hydrogen peroxide, UV/free chlorine and UV/chloramines advanced oxidation process treatment for potable reuse, Water Res., 164 (2019) 114939, doi: 10.1016/j. watres.2019.114939.
  81. Y.H. Chuang, A. Szczuka, F. Shabani, J. Munoz, R. Aflaki, S.D. Hammond, W.A. Mitch, Pilot-scale comparison of microfiltration/reverse osmosis and ozone/biological activated carbon with UV/hydrogen peroxide or UV/free chlorine AOP treatment for controlling disinfection by-products during wastewater reuse, Water Res., 152 (2019) 215–225.
  82. Z. Yimeng, C. Wenhai, X. Ting, Y. Daqiang, X. Bin, L. Pan, A. Na, Impact of pre-oxidation using H2O2 and ultraviolet/H2O2 on disinfection by-products generated from chlor(am) ination of chloramphenicol, Chem. Eng. J., 317 (2017) 112–118.
  83. F.X. Tian, S.X. Ma, B. Xu, X.J. Hu, H.B. Xing, J. Liu, J. Wang, Y.Y. Li, B. Wang, X. Jiang, Photochemical degradation of iodate by UV/H2O2 process: kinetics, parameters and enhanced formation of iodo-trihalomethanes during chloramination, Chemosphere, 221 (2019) 292–300.
  84. J. Zhang, J. Liu, C.S. He, C. Qian, Y. Mu, Formation of iodotrihalomethanes (I-THMs) during disinfection with chlorine or chloramine: impact of UV/H2O2 pre-oxidation, Sci. Total Environ., 640–641 (2018) 764–771.
  85. L. Cai, L. Li, S. Yu, J. Guo, S. Kuppers, L. Dong, Formation of odorous by-products during chlorination of major amino acids in East Taihu Lake: impacts of UV, UV/PS and UV/H2O2 pretreatments, Water Res., 162 (2019) 427–436.
  86. N.H. Ince, D.T. Gönenç, Treatability of a textile azo dye by UV/H2O2, Environ. Technol., 18 (1997) 179–185.
  87. B.R. Moon, T.K. Kim, M.K. Kim, J. Choi, K.D. Zoh, Degradation mechanisms of Microcystin-LR during UV-B photolysis and UV/H2O2 processes: by-products and pathways, Chemosphere, 185 (2017) 1039–1047.
  88. I. Gultekin, N.H. Ince, Degradation of reactive azo dyes by UV/H2O2: impact of radical scavengers, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 39 (2004) 1069–1081.
  89. J.A. Khan, X. He, H.M. Khan, N.S. Shah, D.D. Dionysiou, Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, UV//Fe2+ and UV//Fe2+ processes: a comparative study, Chem. Eng. J., 218 (2013) 376–383.
  90. C. Amor, J.R. Fernandes, M.S. Lucas, J.A. Peres, Hydroxyl and sulfate radical advanced oxidation processes: application to an agro-industrial wastewater, Environ. Technol. Innovation, 21 (2020) 101183, doi: 10.1016/j.eti.2020.101183.
  91. Y. Fu, G. Wu, J. Geng, J. Li, S. Li, H. Ren, Kinetics and modeling of artificial sweeteners degradation in wastewater by the UV/persulfate process, Water Res., 150 (2019) 12–20.
  92. J. Wang, S. Wang, Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chem. Eng. J., 334 (2018) 1502–1517.
  93. F. Wang, W. Wang, S. Yuan, W. Wang, Z.-H. Hu, Comparison of UV/H2O2 and UV/PS processes for the degradation of thiamphenicol in aqueous solution, J. Photochem. Photobiol., A, 348 (2017) 79–88.
  94. S. Canonica, T. Kohn, M. Mac, F.J. Real, J. Wirz, U. von Gunten, Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds, Environ. Sci. Technol., 39 (2005) 9182–9188.
  95. L. Zhou, Sulfate-radical induced removal of organic micropollutants from aqueous solution-influence of natural water constituents, Catalysis, (2017).
  96. Q. Wang, Y. Shao, N. Gao, W. Chu, J. Chen, X. Lu, Y. Zhu, N. An, Impact of preoxidation of UV/persulfate on disinfection by-products by chlorination of 2,4-di-tert-butylphenol, J. Hazard. Mater., 358 (2018) 450–458.
  97. Z. Hua, X. Kong, S. Hou, S. Zou, X. Xu, H. Huang, J. Fang, DBP alteration from NOM and model compounds after UV/ persulfate treatment with post chlorination, Water Res., 158 (2019) 237–245.
  98. W. Chu, D. Li, Y. Deng, N. Gao, Y. Zhang, Y. Zhu, Effects of UV/PS and UV/H2O2 pre-oxidations on the formation of trihalomethanes and haloacetonitriles during chlorination and chloramination of free amino acids and short oligopeptides, Chem. Eng. J., 301 (2016) 65–72.
  99. S. Giannakis, K.-Y.A. Lin, F. Ghanbari, A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs), Chem. Eng. J., 406 (2021) 127083, doi: 10.1016/j. cej.2020.127083.
  100. L. Bu, J. Sun, Y. Wu, W. Zhang, X. Duan, S. Zhou, D.D. Dionysiou, J.C. Crittenden, Non-negligible risk of chloropicrin formation during chlorination with the UV/persulfate pretreatment process in the presence of low concentrations of nitrite, Water Res., 168 (2020) 115194, doi: 10.1016/j.watres.2019.115194.
  101. Y.Q. Gao, N.Y. Gao, W.H. Chu, Y.F. Zhang, J. Zhang, D.Q. Yin, UV-activated persulfate oxidation of sulfamethoxypyridazine: kinetics, degradation pathways and impact on DBP formation during subsequent chlorination, Chem. Eng. J., 370 (2019) 706–715.
  102. B. Kose-Mutlu, Natural organic matter and sulphate elimination from rainwater with nanofiltration technology and process optimisation using response surface methodology, Water Sci. Technol., 83 (2021) 580–594.
  103. F.P. Chaves, G. Gomes, A. Della-Flora, A. Dallegrave, C. Sirtori, E.M. Saggioro, D.M. Bila, Comparative endocrine disrupting compound removal from real wastewater by UV/Cl and UV/H2O2: effect of pH, estrogenic activity, transformation products and toxicity, Sci. Total Environ., 746 (2020) 141041, doi: 10.1016/j.scitotenv.2020.141041.
  104. C. Wang, N. Moore, K. Bircher, S. Andrews, R. Hofmann, Full-scale comparison of UV/H2O2 and UV/Cl2 advanced oxidation: the degradation of micropollutant surrogates and the formation of disinfection by-products, Water Res., 161 (2019) 448–458.
  105. A. Belghit, S. Merouani, O. Hamdaoui, A. Alghyamah, M. Bouhelassa, Influence of processing conditions on the synergism between UV irradiation and chlorine toward the degradation of refractory organic pollutants in UV/chlorine advanced oxidation system, Sci. Total Environ., 736 (2020) 139623, doi: 10.1016/j.scitotenv.2020.139623.
  106. W.L. Wang, X. Zhang, Q.Y. Wu, Y. Du, H.Y. Hu, Degradation of natural organic matter by UV/chlorine oxidation: molecular decomposition, formation of oxidation by-products and cytotoxicity, Water Res., 124 (2017) 251–258.
  107. J. Sun, D. Kong, E. Aghdam, J. Fang, Q. Wu, J. Liu, Y. Du, X. Yang, C. Shang, The influence of the UV/chlorine advanced oxidation of natural organic matter for micropollutant degradation on the formation of DBPs and toxicity during post-chlorination, Chem. Eng. J., 373 (2019) 870–879.
  108. X. Yang, J. Sun, W. Fu, C. Shang, Y. Li, Y. Chen, W. Gan, J. Fang, PPCP degradation by UV/chlorine treatment and its impact on DBP formation potential in real waters, Water Res., 98 (2016) 309–318.
  109. Z. Hua, D. Li, Z. Wu, D. Wang, Y. Cui, X. Huang, J. Fang, T. An, DBP formation and toxicity alteration during UV/ chlorine treatment of wastewater and the effects of ammonia and bromide, Water Res., 188 (2021) 116549, doi: 10.1016/j. watres.2020.116549.
  110. D. Wang, J.R. Bolton, S.A. Andrews, R. Hofmann, Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process, Sci. Total Environ., 518 (2015) 49–57.
  111. L. Bu, S. Zhou, S. Zhu, Y. Wu, X. Duan, Z. Shi, D.D. Dionysiou, Insight into carbamazepine degradation by UV/monochloramine: reaction mechanism, oxidation products, and DBPs formation, Water Res., 146 (2018) 288–297.
  112. Z. Liu, B. Xu, T.Y. Zhang, C.Y. Hu, Y.L. Tang, Z.Y. Dong, T.C. Cao, M.G. El-Din, Formation of disinfection by-products in a UV-activated mixed chlorine/chloramine system, J. Hazard. Mater., 407 (2020) 124373, doi: 10.1016/j.jhazmat.2020.124373.
  113. Z.C. Gao, Y.L. Lin, B. Xu, Y. Xia, C.Y. Hu, T.Y. Zhang, H. Qian, T.C. Cao, N.Y. Gao, Effect of bromide and iodide on halogenated by-product formation from different organic precursors during UV/chlorine processes, Water Res., 182 (2020) 116035, doi: 10.1016/j.watres.2020.116035.
  114. F. Dong, Q. Lin, C. Li, L. Wang, A. García, UV/chlorination process of algal-laden water: algal inactivation and disinfection by-products attenuation, Sep. Purif. Technol., 257 (2021) 117896, doi: 10.1016/j.seppur.2020.117896.
  115. H. Milh, X. Yu, D. Cabooter, R. Dewil, Degradation of ciprofloxacin using UV-based advanced removal processes: comparison of persulfate-based advanced oxidation and sulfite-based advanced reduction processes, Sci. Total Environ., 764 (2020) 144510, doi: 10.1016/j.scitotenv.2020.144510.
  116. X. Gan, T. Karanfil, S.S. Kaplan Bekaroglu, J. Shan, The control of N-DBP and C-DBP precursors with MIEX(R), Water Res., 47 (2013) 1344–1352.
  117. R. Andreozzi, I. Di Somma, A. Pollio, G. Pinto, R. Sanchirico, Toxicity of unwanted intermediates and products formed during accidental thermal decomposition of chemicals, J. Hazard. Mater., 150 (2008) 433–437.
  118. X. Xu, J. Chen, R. Qu, Z. Wang, Oxidation of tris(2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: kinetics, water matrix effects, degradation products and reaction pathways, Chemosphere, 185 (2017) 833–843.
  119. T. Zeng, M.J. Plewa, W.A. Mitch, N-nitrosamines and halogenated disinfection by-products in U.S. full advanced treatment trains for potable reuse, Water Res., 101 (2016) 176–186.
  120. S. Kali, M. Khan, M.S. Ghaffar, S. Rasheed, A. Waseem, M.M. Iqbal, M. Bilal Khan Niazi, M.I. Zafar, Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: a comprehensive review, Environ. Pollut., 281 (2021) 116950, doi: 10.1016/j.envpol.2021.116950.
  121. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
  122. Y. Qi, R. Qu, J. Liu, J. Chen, G. Al-Basher, N. Alsultan, Z. Wang, Z. Huo, Oxidation of flumequine in aqueous solution by UV-activated peroxymonosulfate: kinetics, water matrix effects, degradation products and reaction pathways, Chemosphere, 237 (2019) 124484, doi: 10.1016/j.chemosphere.2019.124484.
  123. R.E. Huie, C.L. Clifton, Temperature dependence of the rate constants for reactions of the sulfate radical, SO4•–, with anions, J. Phys. Chem., 94 (1990) 8561–8567.
  124. Z.H. Zuo, Z.L. Cai, Y. Katsumura, N. Chitose, Y. Muroya, Reinvestigation of the acid–base equilibrium of the (bi) carbonate radical and pH dependence of its reactivity with inorganic reactants, Radiat. Phys. Chem., 55 (1999) 15–23.
  125. B.M. Matthew, C. Anastasio, A chemical probe technique for the determination of reactive halogen species in aqueous solution: part 1 - bromide solutions, Atmos. Chem. Phys., 6 (2006) 2423–2437.
  126. B.G. Ershov, Kinetics, mechanism and intermediates of some radiation-induced reactions in aqueous solutions, Russ. Chem. Rev., 73 (2004) 101–113.
  127. G.R. Peyton, The free-radical chemistry of persulfate-based total organic carbon analyzers, Mar. Chem., 41 (1993) 91–103.
  128. S. Wacławek, H.V. Lutze, K. Grübel, V.V.T. Padil, M. Černík, D.D. Dionysiou, Chemistry of persulfates in water and wastewater treatment: a review, Chem. Eng. J., 330 (2017) 44–62.
  129. R.J. Zehavi, Oxidation of aqueous bromide ions by hydroxyl radicals-pulse radiolytic investigation, J. Phys. Chem., 76 (1972) 312–319.
  130. X. Liu, Y. Liu, S. Lu, Z. Wang, Y. Wang, G. Zhang, X. Guo, W. Guo, T. Zhang, B. Xi, Degradation difference of ofloxacin and levofloxacin by UV/H2O2 and UV/PS (persulfate): efficiency, factors and mechanism, Chem. Eng. J., 385 (2020) 123987, doi: 10.1016/j.cej.2019.123987.
  131. C. Chen, Z. Wu, S. Zheng, L. Wang, X. Niu, J. Fang, Comparative study for interactions of sulfate radical and hydroxyl radical with phenol in the presence of nitrite, Environ. Sci. Technol., 54 (2020) 8455–8463.
  132. B. Nikravesh, A. Shomalnasab, A. Nayyer, N. Aghababaei, R. Zarebi, F. Ghanbari, UV/Chlorine process for dye degradation in aqueous solution: mechanism, affecting factors and toxicity evaluation for textile wastewater, J. Environ. Chem. Eng., 8 (2020) 104244, doi: 10.1016/j.jece.2020.104244.
  133. L. Qin, Y.L. Lin, B. Xu, C.Y. Hu, F.X. Tian, T.Y. Zhang, W.Q. Zhu, H. Huang, N.Y. Gao, Kinetic models and pathways of ronidazole degradation by chlorination, UV irradiation and UV/chlorine processes, Water Res., 65 (2014) 271–81.
  134. Z.B. Guo, Y.L. Lin, B. Xu, H. Huang, T.Y. Zhang, F.X. Tian, N.Y. Gao, Degradation of chlortoluron during UV irradiation and UV/chlorine processes and formation of disinfection by-products in sequential chlorination, Chem. Eng. J., 283 (2016) 412–419.
  135. P. Sun, W.N. Lee, R. Zhang, C.H. Huang, Degradation of DEET and caffeine under UV/chlorine and simulated sunlight/chlorine conditions, Environ. Sci. Technol., 50 (2016) 13265–13273.
  136. C.K. Remucal, D. Manley, Emerging investigators series: the efficacy of chlorine photolysis as an advanced oxidation process for drinking water treatment, Environ. Sci. Water Res. Technol., 2 (2016) 565–579.
  137. F. Zohra Meghlaoui, S. Merouani, O. Hamdaoui, M. Bouhelassa, M. Ashokkumar, Rapid catalytic degradation of refractory textile dyes in Fe(II)/chlorine system at near neutral pH: radical mechanism involving chlorine radical anion (Cl2•−)-mediated transformation pathways and impact of environmental matrices, Sep. Purif. Technol., 227 (2019) 115685, doi: 10.1016/j.seppur.2019.115685.
  138. P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem., 17 (1988) 1027–1284.
  139. R. Zhang, P. Sun, T.H. Boyer, L. Zhao, C.H. Huang, Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS, Environ. Sci. Technol., 49 (2015) 3056–66.
  140. P. Xie, J. Ma, W. Liu, J. Zou, S. Yue, X. Li, M.R. Wiesner, J. Fang, Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals, Water Res., 69 (2015) 223–233.
  141. T. Beitz, W. Bechmann, R. Mitzner, Investigations of reactions of selected azaarenes with radicals in water, J. Phys. Chem. A, 102 (1998) 6766–6771.
  142. X. Lu, Y. Shao, N. Gao, J. Chen, H. Deng, W. Chu, N. An, F. Peng, Investigation of clofibric acid removal by UV/persulfate and UV/chlorine processes: kinetics and formation of disinfection by-products during subsequent chlor(am) ination, Chem. Eng. J., 331 (2018) 364–371.
  143. Z. Chen, J. Fang, C. Fan, C. Shang, Oxidative degradation of N-Nitrosopyrrolidine by the ozone/UV process: kinetics and pathways, Chemosphere, 150 (2016) 731–739.
  144. H. Mestankova, K. Schirmer, S. Canonica, U. von Gunten, Development of mutagenicity during degradation of N-nitrosamines by advanced oxidation processes, Water Res., 66 (2014) 399–410.
  145. O. Rozas, C. Vidal, C. Baeza, W.F. Jardim, A. Rossner, H.D. Mansilla, Organic micropollutants (OMPs) in natural waters: oxidation by UV/H2O2 treatment and toxicity assessment, Water Res., 98 (2016) 109–18.
  146. Z. Wang, Y. Shao, N. Gao, N. An, Degradation kinetic of dibutyl phthalate (DBP) by sulfate radical- and hydroxyl radical-based advanced oxidation process in UV/persulfate system, Sep. Purif. Technol., 195 (2018) 92–100.