References

  1. J. Schleich, T. Hillenbrand, Determinants of residential water demand in Germany, Ecol. Econ., 68 (2009) 1756–1769.
  2. T.M. Al-Momani, “Mohammed-Ezz-Aldien” Ibrahim Dwairi, Physical and technical characteristics of jarash clay deposits from Northern Jordan, Jordan J. Earth Environ. Sci., 9 (2018) 81–88.
  3. PRB, World Population Data Sheet, Demographic Data and Estimates for the Countries and Regions of the World, 1998.
  4. A. Porowski, D. Porowska, S. Halas, Identification of sulfate sources and biogeochemical processes in an aquifer affected by peatland: insights from monitoring the isotopic composition of groundwater sulfate in Kampinos National Park, Poland, Water, 11 (2019) 1388, doi: 10.3390/w11071388.
  5. A. Jiries, T. El-Hasan, M. Al-Hweiti, K.-P. Seiler, Evaluation of the effluent water quality produced at phosphate mines in Central Jordan, Mine Water Environ., 23 (2004) 133–137.
  6. H.S. Al-Zoubi, S.S. Al-Thyabat, Treatment of a Jordanian phosphate mine wastewater by hybrid dissolved air flotation and nanofiltration, Mine Water Environ., 31 (2012) 214–224.
  7. W. Cao, Z. Dang, X.-Q. Zhou, X.-Y. Yi, P.-X. Wu, N.-W. Zhu, G.-N. Lu, Removal of sulphate from aqueous solution using modified rice straw: preparation, characterization and adsorption performance, Carbohydr. Polym., 85 (2011) 571–577.
  8. I. Pikaar, K.R. Sharma, S.H. Hu, W.G. Gernjak, J. Keller, Z. Yuan, Water engineering. Reducing sewer corrosion through integrated urban water management, Science, 345 (2014) 812–814.
  9. H. Sun, B. Shi, F. Yang, D. Wang, Effects of sulfate on heavy metal release from iron corrosion scales in drinking water distribution system, Water Res., 114 (2017) 69–77.
  10. D. Baldwin, A. Mitchell, Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment, Water Res., 46 (2011) 965–974.
  11. A.M. Silva, R.M.F. Lima, V.A. Leão, Mine water treatment with limestone for sulfate removal, J. Hazard. Mater., 221–222 (2012) 45–55.
  12. WHO, Guidelines for Drinking Water Quality, World Health Organization, 2017. Available at: https://www.who.int/ publications/i/item/9789241549950, accessed on.04-04-2021.
  13. Ministry of Water and Irrigation, Jordan “Water-Natural Water”, 2009. Available at: http://www.jsmo.gov.jo/en/ EServices/Standards/Pages/StdLists.aspx?ics=1306020, accessed on 03-04-2021.
  14. H. Al-Zoubi, N. Hilal, N.A. Darwish, A.W. Mohammad, Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler– Kedem model, Desalination, 206 (2007) 42–60.
  15. H.I. Shaban, A.M. Akbar, M.A. Fahim, Treatment of ammonium sulfate effluents by reverse osmosis, Environ. Sci. Eng., 13 (1978) 315–324.
  16. İ. Can, Ö. Bıçak, S. Özçelik, N. Can, Z. Ekmekçi, Sulphate removal from flotation process water using ion-exchange resin column system, Minerals, 10 (2020) 655–671.
  17. R. Nilsson, Removal of metals by chemical treatment of municipal waste water, Water Res., 5 (1971) 51–60.
  18. R.J. Bowell, A Review of Sulfate Removal Options for Mine Waters, A.P. Jarvis, B.A. Dudgeon, P.L. Younger, Eds., Mine Water 2004 – Proceedings International Mine Water Association Symposium 2, University of Newcastle, Newcastle upon Tyne, 2004, pp. 75–91.
  19. W. Omar, H. Al-Itawi, Removal of Pb+2 ions from aqueous solutions by adsorption on kaolinite clay, Am. J. Appl. Sci., 4 (2007) 502–507.
  20. H. Al-Zoubi, M. Zubair, M.S. Manzar, A.A. Manda, N.I. Blaisi, A. Qureshi, A. Matan, Comparative adsorption of anionic dyes (Eriochrome Black T and Congo Red) onto Jojoba residues: isotherm, kinetics and thermodynamic studies, Arabian J. Sci. Eng., 45 (2020) 7275–7287.
  21. P. Taylor, T. Mahmood, A. Khan, A. Naeem, M. Hamayun, M. Muska, Adsorption of Ni(II) ions from aqueous solution onto a fungus Pleurotus ostreatus, Desal. Water Treat., 57 (2015) 7209–7218.
  22. W. Omar, R. Al Dwairi, Z.S. Abu-Hamatteh, N. Jabarin, Investigation of natural Jordanian zeolite tuff (JZT) as adsorbent for TOC removal from industrial wastewater in a continuous fixed bed column: study of the influence of particle size, Desal. Water Treat., 152 (2019) 26–32.
  23. Y. Rajesh, G. Namrata, U. Ramgopal, Ni(II) adsorption characteristics of commercial activated carbon from synthetic electroless plating solutions, Desal. Water Treat., 57 (2016) 13807–13817.
  24. W. Stigliani, Changes in valued capacities of soils and sediments as indicators of nonlinear and time-delayed environmental effects, Environ. Monit. Assess., 10 (1988) 245–307.
  25. M. Matłok, R. Petrus, J.K. Warchoł, Equilibrium study of heavy metals adsorption on kaolin, Ind. Eng. Chem. Res., 54 (2015) 6975–6984.
  26. A. Sdiri, T. Higashi, T. Hatta, F. Jamoussi, N. Tase, Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems, Chem. Eng. J., 172 (2011) 37–46.
  27. W. Gao, S. Zhao, H. Wu, W. Deligeer, S. Asuha, Direct acid activation of kaolinite and its effects on the adsorption of methylene blue, Appl. Clay Sci., 126 (2016) 98–106.
  28. R. Frost, E. Mako, J. Kristóf, E. Horvath, T. Kloprogge, Mechanochemical treatment of kaolinite, J. Colloid Interface Sci., 239 (2001) 458–466.
  29. A. Emam, L. Ismail, M. Abdelkhalek, Azzarehan, Adsorption study of some heavy metal ions on modified kaolinite clay, Int. J. Adv. Eng. Technol. Manage. Appl., 3 (2016) 152–163.
  30. G. Atun, E. Bascetin, Adsorption of barium on kaolinite, illite and montmorillonite at various ionic strengths, Radiochim. Acta, 91 (2003) 223–228.
  31. H. Watanabe, C.D. Gutleben, J. Seto, Sulfate ions on the surface of maghemite and hematite, Solid State Ionics, 69 (1994) 29–35.
  32. A.K. Panda, B.G. Mishra, D.K. Mishra, R.K. Singh, Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay, Colloids Surf., A, 363 (2010) 98–104.
  33. C. Belver, M.A. Bañares Muñoz, M.A. Vicente, Chemical activation of a kaolinite under acid and alkaline conditions, Chem. Mater., 14 (2002) 2033–2043.
  34. J.-B. Chai, P.-I. Au, N.M. Mubarak, M. Khalid, W.P.-Q. Ng, P. Jagadish, R. Walvekar, E.C. Abdullah., Adsorption of heavy metal from industrial wastewater onto low-cost Malaysian kaolin clay-based adsorbent, Environ. Sci. Pollut. Res., 27 (2020) 13949–13962.
  35. N. Caponi, G. Collazzo, S.L. Jahn, G. Dotto, M. Mazutti, E. Foletto, Use of Brazilian kaolin as a potential low-cost adsorbent for the removal of malachite green from colored effluents, Mater. Res., 20 (2017) 14–22.
  36. E. Peter, A. Dabulo, G. Thillainayagam, Growth and characterization of barium chloride dihydrate crystal, Int J. Sci. Res., 8 (2019) 1775–1779.
  37. G. El Mouhri, M. Merzouki, H. Belhassan, Y. Miyah, H. Amakdouf, R. Elmountassir, A. Lahrichi, Continuous adsorption modeling and fixed bed column studies: adsorption of tannery wastewater pollutants using Beach Sand, J. Chem., 2020 (2020) 1–9.
  38. Y. Han, S. Shunan, F. Yang, Y. Xie, M. Zhao, J.-R. Li, Sizeexclusive and coordination-induced selective dye adsorption in a nanotubular metal–organic framework, J. Mater. Chem. A, 3 (2015) 12804–12809.
  39. E.I. Unuabonah, M.I. El-Khaiary, B.I. Olu-Owolabi, K.O. Adebowale, Predicting the dynamics and performance of a polymer–clay based composite in a fixed bed system for the removal of lead(II) ion, Chem. Eng. Res. Des., 90 (2012) 1105–1115.
  40. S. Kundu, A.K. Gupta, As(III) removal from aqueous medium in fixed bed using iron oxide-coated cement (IOCC): experimental and modeling studies, Chem. Eng. J., 129 (2007) 123–131.
  41. K.S. Rao, S. Anand, P. Venkateswarlu, Modeling the kinetics of Cd(II) adsorption on Syzygium cumini L leaf powder in a fixed bed mini column, J. Ind. Eng. Chem., 17 (2011) 174–181.
  42. R. Han, Y. Wang, X. Zhao, Y. Wang, F. Xie, J. Cheng, M. Tang, Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: experiments and prediction of breakthrough curves, Desalination, 245 (2009) 284–297.
  43. K. Chu, Fixed bed sorption: setting the record straight on the Bohart–Adams and Thomas models, J. Hazard. Mater., 177 (2010) 1006–1012.
  44. D.O. Cooney, Adsorption Design for Wastewater Treatment, Taylor & Francis, 1998.
  45. G.S. Bohart, E.Q. Adams, Some aspects of the behavior of charcoal with respect to chlorine, J. Am. Chem. Soc., 42 (1920) 523–544.
  46. Z. Chowdhury, S.B. Abd Hamid, S. Zain, Evaluating design parameters for breakthrough curve analysis and kinetics of fixed bed columns for Cu(II) cations using lignocellulosic wastes, BioResources, 10 (2014) 732–749.
  47. Z. Aksu, F. Gönen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochem., 39 (2004) 599–613.
  48. K.H. Chu, Breakthrough curve analysis by simplistic models of fixed bed adsorption: in defense of the century-old Bohart– Adams model, Chem. Eng. J., 380 (2020) 122513–122521.
  49. H.C. Thomas, Heterogeneous ion exchange in a flowing system, J. Am. Chem. Soc., 66 (1944) 1664–1666.
  50. J. Wu, H.-Q. Yu, Biosorption of 2,4-dichlorophenol by immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solutions, Bioresour. Technol., 98 (2007) 253–259.
  51. S. Ayoob, A. Gupta, P. Bhakat, Analysis of breakthrough developments and modeling of fixed bed adsorption system for As(V) removal from water by modified calcined bauxite (MCB), Sep. Purif. Technol., 52 (2007) 430–438.
  52. Z. Xu, J. Cai, B. Pan, Mathematically modeling fixed-bed adsorption in aqueous systems, J. Zhejiang Univ. Sci. A, 14 (2013) 155–176.
  53. Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service life, Am. Ind. Hyg. Assoc. J., 45 (1984) 509–516.