References
- J. Schleich, T. Hillenbrand, Determinants of residential water
demand in Germany, Ecol. Econ., 68 (2009) 1756–1769.
- T.M. Al-Momani, “Mohammed-Ezz-Aldien” Ibrahim Dwairi,
Physical and technical characteristics of jarash clay deposits
from Northern Jordan, Jordan J. Earth Environ. Sci., 9 (2018)
81–88.
- PRB, World Population Data Sheet, Demographic Data and
Estimates for the Countries and Regions of the World, 1998.
- A. Porowski, D. Porowska, S. Halas, Identification of sulfate
sources and biogeochemical processes in an aquifer affected by
peatland: insights from monitoring the isotopic composition
of groundwater sulfate in Kampinos National Park, Poland,
Water, 11 (2019) 1388, doi: 10.3390/w11071388.
- A. Jiries, T. El-Hasan, M. Al-Hweiti, K.-P. Seiler, Evaluation
of the effluent water quality produced at phosphate mines in
Central Jordan, Mine Water Environ., 23 (2004) 133–137.
- H.S. Al-Zoubi, S.S. Al-Thyabat, Treatment of a Jordanian
phosphate mine wastewater by hybrid dissolved air flotation
and nanofiltration, Mine Water Environ., 31 (2012) 214–224.
- W. Cao, Z. Dang, X.-Q. Zhou, X.-Y. Yi, P.-X. Wu, N.-W. Zhu,
G.-N. Lu, Removal of sulphate from aqueous solution using
modified rice straw: preparation, characterization and
adsorption performance, Carbohydr. Polym., 85 (2011) 571–577.
- I. Pikaar, K.R. Sharma, S.H. Hu, W.G. Gernjak, J. Keller,
Z. Yuan, Water engineering. Reducing sewer corrosion through
integrated urban water management, Science, 345 (2014)
812–814.
- H. Sun, B. Shi, F. Yang, D. Wang, Effects of sulfate on heavy
metal release from iron corrosion scales in drinking water
distribution system, Water Res., 114 (2017) 69–77.
- D. Baldwin, A. Mitchell, Impact of sulfate pollution on
anaerobic biogeochemical cycles in a wetland sediment, Water
Res., 46 (2011) 965–974.
- A.M. Silva, R.M.F. Lima, V.A. Leão, Mine water treatment with
limestone for sulfate removal, J. Hazard. Mater., 221–222 (2012)
45–55.
- WHO, Guidelines for Drinking Water Quality, World Health
Organization, 2017. Available at: https://www.who.int/
publications/i/item/9789241549950, accessed on.04-04-2021.
- Ministry of Water and Irrigation, Jordan “Water-Natural
Water”, 2009. Available at: http://www.jsmo.gov.jo/en/
EServices/Standards/Pages/StdLists.aspx?ics=1306020, accessed
on 03-04-2021.
- H. Al-Zoubi, N. Hilal, N.A. Darwish, A.W. Mohammad,
Rejection and modelling of sulphate and potassium salts by
nanofiltration membranes: neural network and Spiegler–
Kedem model, Desalination, 206 (2007) 42–60.
- H.I. Shaban, A.M. Akbar, M.A. Fahim, Treatment of ammonium
sulfate effluents by reverse osmosis, Environ. Sci. Eng.,
13 (1978) 315–324.
- İ. Can, Ö. Bıçak, S. Özçelik, N. Can, Z. Ekmekçi, Sulphate
removal from flotation process water using ion-exchange resin
column system, Minerals, 10 (2020) 655–671.
- R. Nilsson, Removal of metals by chemical treatment of
municipal waste water, Water Res., 5 (1971) 51–60.
- R.J. Bowell, A Review of Sulfate Removal Options for Mine
Waters, A.P. Jarvis, B.A. Dudgeon, P.L. Younger, Eds., Mine
Water 2004 – Proceedings International Mine Water Association
Symposium 2, University of Newcastle, Newcastle upon Tyne,
2004, pp. 75–91.
- W. Omar, H. Al-Itawi, Removal of Pb+2 ions from aqueous
solutions by adsorption on kaolinite clay, Am. J. Appl. Sci.,
4 (2007) 502–507.
- H. Al-Zoubi, M. Zubair, M.S. Manzar, A.A. Manda, N.I. Blaisi,
A. Qureshi, A. Matan, Comparative adsorption of anionic dyes
(Eriochrome Black T and Congo Red) onto Jojoba residues:
isotherm, kinetics and thermodynamic studies, Arabian J. Sci.
Eng., 45 (2020) 7275–7287.
- P. Taylor, T. Mahmood, A. Khan, A. Naeem, M. Hamayun,
M. Muska, Adsorption of Ni(II) ions from aqueous solution
onto a fungus Pleurotus ostreatus, Desal. Water Treat., 57 (2015)
7209–7218.
- W. Omar, R. Al Dwairi, Z.S. Abu-Hamatteh, N. Jabarin,
Investigation of natural Jordanian zeolite tuff (JZT) as adsorbent
for TOC removal from industrial wastewater in a continuous
fixed bed column: study of the influence of particle size, Desal.
Water Treat., 152 (2019) 26–32.
- Y. Rajesh, G. Namrata, U. Ramgopal, Ni(II) adsorption
characteristics of commercial activated carbon from synthetic
electroless plating solutions, Desal. Water Treat., 57 (2016)
13807–13817.
- W. Stigliani, Changes in valued capacities of soils and sediments
as indicators of nonlinear and time-delayed environmental
effects, Environ. Monit. Assess., 10 (1988) 245–307.
- M. Matłok, R. Petrus, J.K. Warchoł, Equilibrium study of heavy
metals adsorption on kaolin, Ind. Eng. Chem. Res., 54 (2015)
6975–6984.
- A. Sdiri, T. Higashi, T. Hatta, F. Jamoussi, N. Tase, Evaluating
the adsorptive capacity of montmorillonitic and calcareous
clays on the removal of several heavy metals in aqueous
systems, Chem. Eng. J., 172 (2011) 37–46.
- W. Gao, S. Zhao, H. Wu, W. Deligeer, S. Asuha, Direct acid
activation of kaolinite and its effects on the adsorption of
methylene blue, Appl. Clay Sci., 126 (2016) 98–106.
- R. Frost, E. Mako, J. Kristóf, E. Horvath, T. Kloprogge,
Mechanochemical treatment of kaolinite, J. Colloid Interface
Sci., 239 (2001) 458–466.
- A. Emam, L. Ismail, M. Abdelkhalek, Azzarehan, Adsorption
study of some heavy metal ions on modified kaolinite clay,
Int. J. Adv. Eng. Technol. Manage. Appl., 3 (2016) 152–163.
- G. Atun, E. Bascetin, Adsorption of barium on kaolinite, illite
and montmorillonite at various ionic strengths, Radiochim.
Acta, 91 (2003) 223–228.
- H. Watanabe, C.D. Gutleben, J. Seto, Sulfate ions on the surface
of maghemite and hematite, Solid State Ionics, 69 (1994) 29–35.
- A.K. Panda, B.G. Mishra, D.K. Mishra, R.K. Singh, Effect of
sulphuric acid treatment on the physico-chemical characteristics
of kaolin clay, Colloids Surf., A, 363 (2010) 98–104.
- C. Belver, M.A. Bañares Muñoz, M.A. Vicente, Chemical
activation of a kaolinite under acid and alkaline conditions,
Chem. Mater., 14 (2002) 2033–2043.
- J.-B. Chai, P.-I. Au, N.M. Mubarak, M. Khalid, W.P.-Q. Ng,
P. Jagadish, R. Walvekar, E.C. Abdullah., Adsorption of heavy
metal from industrial wastewater onto low-cost Malaysian
kaolin clay-based adsorbent, Environ. Sci. Pollut. Res., 27 (2020)
13949–13962.
- N. Caponi, G. Collazzo, S.L. Jahn, G. Dotto, M. Mazutti,
E. Foletto, Use of Brazilian kaolin as a potential low-cost
adsorbent for the removal of malachite green from colored
effluents, Mater. Res., 20 (2017) 14–22.
- E. Peter, A. Dabulo, G. Thillainayagam, Growth and
characterization of barium chloride dihydrate crystal, Int J. Sci.
Res., 8 (2019) 1775–1779.
- G. El Mouhri, M. Merzouki, H. Belhassan, Y. Miyah,
H. Amakdouf, R. Elmountassir, A. Lahrichi, Continuous
adsorption modeling and fixed bed column studies: adsorption
of tannery wastewater pollutants using Beach Sand, J. Chem.,
2020 (2020) 1–9.
- Y. Han, S. Shunan, F. Yang, Y. Xie, M. Zhao, J.-R. Li, Sizeexclusive
and coordination-induced selective dye adsorption
in a nanotubular metal–organic framework, J. Mater. Chem. A,
3 (2015) 12804–12809.
- E.I. Unuabonah, M.I. El-Khaiary, B.I. Olu-Owolabi,
K.O. Adebowale, Predicting the dynamics and performance
of a polymer–clay based composite in a fixed bed system for
the removal of lead(II) ion, Chem. Eng. Res. Des., 90 (2012)
1105–1115.
- S. Kundu, A.K. Gupta, As(III) removal from aqueous medium in
fixed bed using iron oxide-coated cement (IOCC): experimental
and modeling studies, Chem. Eng. J., 129 (2007) 123–131.
- K.S. Rao, S. Anand, P. Venkateswarlu, Modeling the kinetics
of Cd(II) adsorption on Syzygium cumini L leaf powder in a
fixed bed mini column, J. Ind. Eng. Chem., 17 (2011) 174–181.
- R. Han, Y. Wang, X. Zhao, Y. Wang, F. Xie, J. Cheng, M. Tang,
Adsorption of methylene blue by phoenix tree leaf powder
in a fixed-bed column: experiments and prediction of
breakthrough curves, Desalination, 245 (2009) 284–297.
- K. Chu, Fixed bed sorption: setting the record straight on
the Bohart–Adams and Thomas models, J. Hazard. Mater.,
177 (2010) 1006–1012.
- D.O. Cooney, Adsorption Design for Wastewater Treatment,
Taylor & Francis, 1998.
- G.S. Bohart, E.Q. Adams, Some aspects of the behavior of
charcoal with respect to chlorine, J. Am. Chem. Soc., 42 (1920)
523–544.
- Z. Chowdhury, S.B. Abd Hamid, S. Zain, Evaluating design
parameters for breakthrough curve analysis and kinetics of
fixed bed columns for Cu(II) cations using lignocellulosic
wastes, BioResources, 10 (2014) 732–749.
- Z. Aksu, F. Gönen, Biosorption of phenol by immobilized
activated sludge in a continuous packed bed: prediction of
breakthrough curves, Process Biochem., 39 (2004) 599–613.
- K.H. Chu, Breakthrough curve analysis by simplistic models
of fixed bed adsorption: in defense of the century-old Bohart–
Adams model, Chem. Eng. J., 380 (2020) 122513–122521.
- H.C. Thomas, Heterogeneous ion exchange in a flowing system,
J. Am. Chem. Soc., 66 (1944) 1664–1666.
- J. Wu, H.-Q. Yu, Biosorption of 2,4-dichlorophenol by
immobilized white-rot fungus Phanerochaete chrysosporium from
aqueous solutions, Bioresour. Technol., 98 (2007) 253–259.
- S. Ayoob, A. Gupta, P. Bhakat, Analysis of breakthrough
developments and modeling of fixed bed adsorption system for
As(V) removal from water by modified calcined bauxite (MCB),
Sep. Purif. Technol., 52 (2007) 430–438.
- Z. Xu, J. Cai, B. Pan, Mathematically modeling fixed-bed
adsorption in aqueous systems, J. Zhejiang Univ. Sci. A,
14 (2013) 155–176.
- Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics.
I. A theoretical model for respirator cartridge service life,
Am. Ind. Hyg. Assoc. J., 45 (1984) 509–516.