References
- V. Jaganathan, P. Cherurveettil, A. Chellasamy, M.S. Premapriya,
Environmental pollution risk analysis and management in
textile industry: a preventive mechanism, Eur. Sci. J., ISSN:
1857–7881 (2014) 480–486 (Special edition).
- S. Madhav, A. Ahamad, P. Singh, P.K. Mishra, A review of textile
industry: wet processing, environmental impacts, and effluent
treatment methods, Environ. Qual. Manage., 27 (2018) 31–41.
- N.M. Sivaram, P.M. Gopal, D. Barik, Chapter 4 – Toxic Waste
from Textile Industries, D. Barik, Ed., Energy from Toxic Organic
Waste for Heat and Power Generation, Woodhead Publishing
Series in Energy, Elsevier, Cambridge, UK, 2019, pp. 43–54.
- J. Wu, M.A. Eiteman, S. Edward Law, Evaluation of membrane
filtration and ozonation processes for treatment of reactive-dye
wastewater, J. Environ. Eng., 124 (1998) 272–277.
- T.G. Webber, K. McLaren, A. Hilger, The Colour Science of Dyes
and Pigments, Heyden & Son, Bristol, 1985.
- T.C.R. Bertolini, R.R. Alcântara, J. de Carvalho Izidoro,
D.A. Fungaro, Adsorption of Acid Orange 8 dye from aqueous
solution onto unmodified and modified zeolites, Electron. J.
Chem., 7 (2015) 358–368.
- M.A. Brown, S.C.D. Vito, Predicting azo dye toxicity, Crit. Rev.
Env. Sci. Technol., 23 (1993) 249–324.
- M.-X. Zhu, L. Lee, H.-H. Wang, Z. Wang, Removal of an anionic
dye by adsorption/precipitation processes using alkaline white
mud, J. Hazard. Mater., 149 (2007) 735–741.
- B. Shi, G. Li, D. Wang, C. Feng, H. Tang, Removal of direct
dyes by coagulation: the performance of preformed polymeric
aluminum species, J. Hazard. Mater., 143 (2007) 567–574.
- M. Kaykhaii, M. Sasani, S. Marghzari, Removal of dyes from
the environment by adsorption process, Chem. Mater. Eng.,
6 (2018) 31–35.
- J. Ma, X. Tang, Y. He, Y. Fan, J. Chen, Robust stable MoS2/GO
filtration membrane for effective removal of dyes and salts from
water with enhanced permeability, Desalination, 480 (2020)
114328, doi: 10.1016/j.desal.2020.114328.
- P. Nidheesh, M. Zhou, M.A. Oturan, An overview on the removal
of synthetic dyes from water by electrochemical advanced
oxidation processes, Chemosphere, 197 (2018) 210–227.
- H. Chun, W. Yizhong, Decolorization and biodegradability of
photocatalytic treated azo dyes and wool textile wastewater,
Chemosphere, 39 (1999) 2107–2115.
- R. Ebrahimi, A. Maleki, Y. Zandsalimi, R. Ghanbari,
B. Shahmoradi, R. Rezaee, M. Safari, S.W. Joo, H. Daraei,
S.H. Puttaiah, O. Giahi, Photocatalytic degradation of organic
dyes using WO3-doped ZnO nanoparticles fixed on a glass
surface in aqueous solution, J. Ind. Eng. Chem., 73 (2019)
297–305.
- K. Hossienzadeh, A. Maleki, H. Daraei, M. Safari, R. Pawar,
S.M. Lee, Sonocatalytic and photocatalytic efficiency of
transition metal-doped ZnO nanoparticles in the removal of
organic dyes from aquatic environments, Korean J. Chem. Eng.,
36 (2019) 1360–1370.
- A. Maleki, B. Shahmoradi, Solar degradation of Direct Blue 71
using surface modified iron doped ZnO hybrid nanomaterials,
Water Sci. Technol., 65 (2012) 1923–1928.
- X. Zhang, Y. Wang, G. Li, Effect of operating parameters on
microwave assisted photocatalytic degradation of azo dye X-3B
with grain TiO2 catalyst, J. Mol. Catal. A: Chem., 237 (2005)
199–205.
- M. Rauf, M. Meetani, S. Hisaindee, An overview on the
photocatalytic degradation of azo dyes in the presence of TiO2
doped with selective transition metals, Desalination, 276 (2011)
13–27.
- B. Shahmoradi, A. Maleki, K. Byrappa, Removal of Disperse
Orange 25 using in situ surface-modified iron-doped TiO2
nanoparticles, Desal. Water Treat., 53 (2015) 3615–3622.
- A. Maleki, M. Seifi, N. Marzban, Evaluation of sonocatalytic
and photocatalytic processes efficiency for degradation of
humic compounds using synthesized transition-metal-doped
ZnO nanoparticles in aqueous solution, J. Chem., 2021 (2021)
9938579, doi: 10.1155/2021/9938579.
- X. Zhang, G. Li, Y. Wang, Microwave assisted photocatalytic
degradation of high concentration azo dye Reactive Brilliant
Red X-3B with microwave electrodeless lamp as light source,
Dyes Pigm., 74 (2007) 536–544.
- B. Robinson, A. Caiola, X. Bai, V. Abdelsayed, D. Shekhawat,
J. Hu, Catalytic direct conversion of ethane to value-added
chemicals under microwave irradiation, Catal. Today,
356 (2020) 3–10.
- A. Anshuman, S. Saremi-Yarahmadi, B. Vaidhyanathan,
Enhanced catalytic performance of reduced graphene oxide-TiO2 hybrids for efficient water treatment using microwave
irradiation, RSC Adv., 8 (2018) 7709–7715.
- N.H. Elsayed, N.R.M. Roberts, B. Joseph, J.N. Kuhn, Comparison
of Pd–Ni–Mg/Ceria–Zirconia and Pt–Ni–Mg/Ceria–Zirconia
catalysts for syngas production via low temperature reforming
of model biogas, Top. Catal., 59 (2016) 138–146.
- I. Khan, N. Zada, I. Khan, M. Sadiq, K. Saeed, Enhancement
of photocatalytic potential and recoverability of Fe3O4
nanoparticles by decorating over monoclinic zirconia,
J. Environ. Health Sci. Eng., 18 (2020) 1473–1489.
- N. Zada, I. Khan, T. Shah, T. Gul, N. Khan, K. Saeed, Ag–Co
oxides nanoparticles supported on carbon nanotubes as an
effective catalyst for the photodegradation of Congo red dye in
aqueous medium, Inorg. Nano-Metal Chem., 50 (2020) 333–340.
- E. Matykina, R. Arrabal, P. Skeldon, G.E. Thompson,
Incorporation of zirconia nanoparticles into coatings formed
on aluminium by AC plasma electrolytic oxidation, J. Appl.
Electrochem., 38 (2008) 1375–1383.
- A.A. Veligzhanin, Y.V. Zubavichus, N.Yu. Kozitsyna,
V.Yu. Murzin, E.V. Khramov, A.A. Chernyshov, Investigation of
PdZn nanoparticle formation upon the thermal decomposition
of acetate precursors by in situ XRD and XAFS, J. Surf. Invest.,
7 (2013) 422–433.
- S. Horikoshi, H. Hidaka, N. Serpone, Environmental
remediation by an integrated microwave/UV-illumination
method. 1. Microwave-assisted degradation of rhodamine-B
dye in aqueous TiO2 dispersions, Environ. Sci. Technol.,
36 (2002) 1357–1366.
- M. Sandhya, K.S. Tumesh, V. Priyanshu, K. Prashant, K.S. Sujoy,
Microwave-assisted catalytic degradation of brilliant green by
spinel zinc ferrite sheets, ACS Omega, 4 (2019) 10411−10418.
- R. Ufana, S.M. Ashraf, F. Munazah, Effect of pH on the
microwave-assisted degradation of methyl orange using
poly(1-naphthylamine) nanotubes in the absence of UV–visible
radiation, Colloid Polym. Sci., 293 (2015) 1035–1042.
- B. Abebe, E.A. Zereffa, H.C. Ananda Murthy, Synthesis of
poly(vinyl alcohol)-aided ZnO/Mn2O3 nanocomposites for
Acid Orange-8 dye degradation: mechanism and antibacterial
activity, ACS Omega, 6 (2021) 954−964.
- M. Saquib, M. Muneer, Titanium dioxide mediated
photocatalyzed degradation of a textile dye derivative, acid
orange 8, in aqueous suspensions, Desalination, 155 (2003)
255–263.
- S. Tunç, O. Duman, T. Gürkan, Monitoring the decolorization
of acid orange 8 and acid red 44 from aqueous solution using
Fenton’s reagents by online spectrophotometric method: effect
of operation parameters and kinetic study, Ind. Eng. Chem.
Res., 52 (2013) 1414−1425.
- T. Venkatesh, D.M.K. Siddeswara, M. Mylarappa,
K.R. Vishnu Mahesh, H.P. Nagaswarupa, N. Raghavendra,
Photo decomposition of acid orang 8 from aqueous solution
by using rGO/CNT/AgO nano composite, Mater. Today: Proc.,
5 (2018) 22663–22668.