References
- A. Payan, M. Fattahi, B. Roozbehani, Synthesis, characterization
and evaluations of TiO2 nanostructures prepared from
different titania precursors for photocatalytic degradation of
4-chlorophenol in aqueous solution, J. Environ. Health Sci.
Eng., 16 (2018) 41–54.
- A. Payan, M. Fattahi, S. Jorfi, B. Roozbehani, S. Payan, Synthesis
and characterization of titanate nanotube/single-walled carbon
nanotube (TNT/SWCNT) porous nanocomposite and its
photocatalytic activity on 4-chlorophenol degradation under
UV and solar irradiation, Appl. Surf. Sci., 434 (2018) 336–350.
- A. Shojaie, M. Fattahi, S. Jorfi, B. Ghasemi, Hydrothermal
synthesis of Fe-TiO2-Ag nano-sphere for photocatalytic
degradation of 4-chlorophenol (4-CP): investigating the effect
of hydrothermal temperature and time as well as calcination
temperature, J. Environ. Chem. Eng., 5 (2017) 4564–4572.
- B.K. Zhang, Q. Li, D.B. Wang, J.Z. Wang, B.J. Jiang, S.J.
Jiao, D.H. Liu, Z. Zeng, C.C. Zhao, Y.X. Liu, Z.K. Xun, X.
Fang, S.Y. Gao, Y. Zhang, L.C. Zhao, Efficient photocatalytic
hydrogen evolution over TiO2–X mesoporous spheres-ZnO
nanorods heterojunction, Nanomaterials (Basel), 10 (2020) 2096,
doi: 10.3390/nano10112096.
- L. Horváth, Dry deposition velocity of PM2.5 ammonium
sulfate particles to a Norway spruce forest on the basis of S- and
N-balance estimations, Atmos. Environ., 37 (2003) 4419–4424.
- O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of
titanium dioxide, Prog. Solid State Chem., 32 (2004) 33–177.
- H. Kim, K. Jeong, D. Bae, Synthesis and characterization of
Fe-doped TiO2 nanoparticles by a sol–gel and hydrothermal
process, Korean J. Mater. Res., 22 (2012) 249–252.
- Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov,
S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive
review of ZnO materials and devices, J. Appl. Phys., 98 (2005)
041301, doi: 10.1063/1.1992666.
- C. Klingshirn, ZnO: material, physics and applications,
ChemPhysChem, 8 (2007) 782–803.
- P. Nuengmatcha, S. Chanthai, R. Mahachai, W.-C. Oh, Visible
light-driven photocatalytic degradation of Rhodamine B and
industrial dyes (texbrite BAC-L and texbrite NFW-L) by ZnOgraphene-
TiO2 composite, J. Environ. Chem. Eng., 4 (2016)
2170–2177.
- N. Farhadian, R. Akbarzadeh, M. Pirsaheb, T.-C. Jen, Y. Fakhri,
A. Asadi, Chitosan modified N, S-doped TiO2 and N, S-doped
ZnO for visible light photocatalytic degradation of tetracycline,
Int. J. Biol. Macromol., 132 (2019) 360–373.
- A. Taufik, A. Albert, R. Saleh, Sol–gel synthesis of ternary
CuO/TiO2/ZnO nanocomposites for enhanced photocatalytic
performance under UV and visible light irradiation, J. Photochem.
Photobiol., A, 344 (2017) 149–162.
- M.A.M. Adnan, B.L. Phoon, N.M. Julkapli, Mitigation of
pollutants by chitosan/metallic oxide photocatalyst: a review,
J. Cleaner Prod., 261 (2020) 121190, doi: 10.1016/j.jclepro.
2020.121190.
- C.C. Pei, W. Woon-Fong Leung, Photocatalytic degradation
of Rhodamine B by TiO2/ZnO nanofibers under visible-light
irradiation, Sep. Purif. Technol., 114 (2013) 108–116.
- J.D. Chen, W.S. Liao, Y. Jiang, D.N. Yu, M.L. Zou, H. Zhu,
M. Zhang, M.L. Du, Facile fabrication of ZnO/TiO2 heterogeneous
nanofibres and their photocatalytic behaviour and mechanism
towards Rhodamine B, Nanomater. Nanotechnol., 6 (2016) 1–9.
- R.H. Zha, R. Nadimicherla, X. Guo, Ultraviolet photocatalytic
degradation of methyl orange by nanostructured TiO2/ZnO
heterojunctions, J. Mater. Chem. A, 3 (2015) 6565–6574.
- G.S. Pozan, A. Kambur, Significant enhancement of
photocatalytic activity over bifunctional ZnO–TiO2 catalysts for
4-chlorophenol degradation, Chemosphere, 105 (2014) 152–159.
- X.M. Xu, J.F. Wang, J. Tian, X. Wang, J. Dai, X. Liu, Hydrothermal
and post-heat treatments of TiO2/ZnO composite powder and
its photodegradation behavior on methyl orange, Ceram. Int.,
37 (2011) 2201–2206.
- Z.H. Zhuge, X.J. Liu, T.Q. Chen, Y.Y. Gong, C. Li, L.Y. Niu,
S.Q. Xu, X.T. Xu, Z.A. Alothman, C.Q. Sun, J.G. Shapter,
Y. Yamauchi, Highly efficient photocatalytic degradation of
different hazardous contaminants by CaIn2S4-Ti3C2Tx Schottky
heterojunction: an experimental and mechanism study,
Chem. Eng. J., 421 (2020) 127838, doi: 10.1016/j.cej.2020.127838.
- X.J. Liu, B.B. Liu, L. Li, Z.H. Zhuge, P.B. Chen, C. Li, Y.Y. Gong,
L.Y. Niu, J.Y. Liu, L. Lei, C.Q. Sun, Cu2In2ZnS5/Gd2O2S: Tb for
full solar spectrum photoreduction of Cr(VI) and CO2 from
UV/vis to near-infrared light, Appl. Catal., B, 249 (2019) 82–90.
- B.B. Liu, X.J. Liu, J.Y. Liu, C.J. Feng, Z. Li, C. Li, Y.Y. Gong,
L.K. Pan, S.Q. Xu, C.Q. Sun, Efficient charge separation
between UiO-66 and ZnIn2S4 flowerlike 3D microspheres for
photoelectronchemical properties, Appl. Catal., B, 226 (2018)
234–241.
- Z.X. Ren, X.J. Liu, Z.H. Zhuge, Y.Y. Gong, C.Q. Sun, MoSe2/ZnO/ZnSe hybrids for efficient Cr(VI) reduction under visible
light irradiation, Chin. J. Catal., 41 (2020) 180–187.
- B.B. Liu, X.J. Liu, L. Li, Z.H. Zhuge, Y.Q. Li, C. Li, Y.Y. Gong,
L.Y. Niu, S.Q. Xu, C.Q. Sun, CaIn2S4 decorated WS2 hybrid for
efficient Cr(VI) reduction, Appl. Surf. Sci., 484 (2019) 300–306.
- R.S. Sabry, Y.K. Al-Haidarie, M.A. Kudhier, Synthesis and
photocatalytic activity of TiO2 nanoparticles prepared by
sol–gel method, J. Sol-Gel Sci. Technol., 78 (2016) 299–306.
- T. Theivasanthi, M. Alagar, Titanium dioxide (TiO2) nanoparticles
XRD analyses: an insight, Chem. Phys., 1307 (2013)
1091
- G.A. Tompsett, L. Krogh, D.W. Griffin, W.C. Conner, Hysteresis
and scanning behavior of mesoporous molecular sieves,
Langmuir, 21 (2005) 8214–8225.
- R. Beranek, H. Kisch, Tuning the optical and photoelectrochemical
properties of surface-modified TiO2, Photochem. Photobiol.
Sci., 7 (2008) 40–48.
- G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer, R.T. Williams,
Photoluminescence and FTIR study of ZnO nanoparticles:
the impurity and defect perspective, Phys. Status Solidi A,
3581 (2006) 3577–3581.
- H. Kumar, R. Rani, Structural and optical characterization
of ZnO nanoparticles synthesized by microemulsion route,
Int. Lett. Chem. Phys. Astron., 14 (2013) 26–36.
- M.A. Gondal, A.M. Ilyas, T.A. Fasasi, M.A. Dastageer,
Z.S. Seddigi, T.F. Qahtan, M. Faiz, G.D. Khattak, Synthesis of
green TiO2/ZnO/CdS hybrid nano-catalyst for efficient light
harvesting using an elegant pulsed laser ablation in liquids
method, Appl. Surf. Sci., 357 (2015) 2217–2222.
- Z. Mesgari, M. Gharagozlou, A. Khosravi, K. Gharanjig, Spectrophotometric
studies of visible light induced photocatalytic
degradation of methyl orange using phthalocyanine-modified
Fe-doped TiO2 nanocrystals, Spectrochim. Acta, Part A.,
92 (2012) 148–153.
- S. Mohammadzadeh, M.E. Olya, A.M. Arabi, A. Shariati,
M.R. Khosravi Nikou, Synthesis, characterization and
application of ZnO-Ag as a nanophotocatalyst for organic
compounds degradation, mechanism and economic study,
J. Environ. Sci., 35 (2016) 194–207.
- N. Sobana, M. Swaminathan, The effect of operational
parameters on the photocatalytic degradation of acid red 18 by
ZnO, Sep. Purif. Technol., 56 (2007) 101–107.
- L.K. Wang, Y.T. Hung, N.K. Shammas, Advanced
Physicochemical Treatment Processes, Humana Press, New
Jersey, 2006, pp. 463–481.
- A. Hernández Battez, R. González, J.L. Viesca, J.E. Fernández,
J.M. Díaz Fernández, A. Machado, R. Chou, J. Riba, CuO, ZrO2
and ZnO nanoparticles as antiwear additive in oil lubricants,
Wear, 265 (2008) 422–428.
- K. Siwińska-Stefańska, A. Kubiak, A. Piasecki, J. Goscianska,
G. Nowaczyk, S. Jurga, T. Jesionowski, TiO2-ZnO binary
oxide systems: Comprehensive characterization and tests
of photocatalytic activity, Materials (Basel), 11 (2018) 841,
doi: 10.3390/ma11050841.