References

  1. A. Payan, M. Fattahi, B. Roozbehani, Synthesis, characterization and evaluations of TiO2 nanostructures prepared from different titania precursors for photocatalytic degradation of 4-chlorophenol in aqueous solution, J. Environ. Health Sci. Eng., 16 (2018) 41–54.
  2. A. Payan, M. Fattahi, S. Jorfi, B. Roozbehani, S. Payan, Synthesis and characterization of titanate nanotube/single-walled carbon nanotube (TNT/SWCNT) porous nanocomposite and its photocatalytic activity on 4-chlorophenol degradation under UV and solar irradiation, Appl. Surf. Sci., 434 (2018) 336–350.
  3. A. Shojaie, M. Fattahi, S. Jorfi, B. Ghasemi, Hydrothermal synthesis of Fe-TiO2-Ag nano-sphere for photocatalytic degradation of 4-chlorophenol (4-CP): investigating the effect of hydrothermal temperature and time as well as calcination temperature, J. Environ. Chem. Eng., 5 (2017) 4564–4572.
  4. B.K. Zhang, Q. Li, D.B. Wang, J.Z. Wang, B.J. Jiang, S.J. Jiao, D.H. Liu, Z. Zeng, C.C. Zhao, Y.X. Liu, Z.K. Xun, X. Fang, S.Y. Gao, Y. Zhang, L.C. Zhao, Efficient photocatalytic hydrogen evolution over TiO2–X mesoporous spheres-ZnO nanorods heterojunction, Nanomaterials (Basel), 10 (2020) 2096, doi: 10.3390/nano10112096.
  5. L. Horváth, Dry deposition velocity of PM2.5 ammonium sulfate particles to a Norway spruce forest on the basis of S- and N-balance estimations, Atmos. Environ., 37 (2003) 4419–4424.
  6. O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem., 32 (2004) 33–177.
  7. H. Kim, K. Jeong, D. Bae, Synthesis and characterization of Fe-doped TiO2 nanoparticles by a sol–gel and hydrothermal process, Korean J. Mater. Res., 22 (2012) 249–252.
  8. Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys., 98 (2005) 041301, doi: 10.1063/1.1992666.
  9. C. Klingshirn, ZnO: material, physics and applications, ChemPhysChem, 8 (2007) 782–803.
  10. P. Nuengmatcha, S. Chanthai, R. Mahachai, W.-C. Oh, Visible light-driven photocatalytic degradation of Rhodamine B and industrial dyes (texbrite BAC-L and texbrite NFW-L) by ZnOgraphene- TiO2 composite, J. Environ. Chem. Eng., 4 (2016) 2170–2177.
  11. N. Farhadian, R. Akbarzadeh, M. Pirsaheb, T.-C. Jen, Y. Fakhri, A. Asadi, Chitosan modified N, S-doped TiO2 and N, S-doped ZnO for visible light photocatalytic degradation of tetracycline, Int. J. Biol. Macromol., 132 (2019) 360–373.
  12. A. Taufik, A. Albert, R. Saleh, Sol–gel synthesis of ternary CuO/TiO2/ZnO nanocomposites for enhanced photocatalytic performance under UV and visible light irradiation, J. Photochem. Photobiol., A, 344 (2017) 149–162.
  13. M.A.M. Adnan, B.L. Phoon, N.M. Julkapli, Mitigation of pollutants by chitosan/metallic oxide photocatalyst: a review, J. Cleaner Prod., 261 (2020) 121190, doi: 10.1016/j.jclepro. 2020.121190.
  14. C.C. Pei, W. Woon-Fong Leung, Photocatalytic degradation of Rhodamine B by TiO2/ZnO nanofibers under visible-light irradiation, Sep. Purif. Technol., 114 (2013) 108–116.
  15. J.D. Chen, W.S. Liao, Y. Jiang, D.N. Yu, M.L. Zou, H. Zhu, M. Zhang, M.L. Du, Facile fabrication of ZnO/TiO2 heterogeneous nanofibres and their photocatalytic behaviour and mechanism towards Rhodamine B, Nanomater. Nanotechnol., 6 (2016) 1–9.
  16. R.H. Zha, R. Nadimicherla, X. Guo, Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions, J. Mater. Chem. A, 3 (2015) 6565–6574.
  17. G.S. Pozan, A. Kambur, Significant enhancement of photocatalytic activity over bifunctional ZnO–TiO2 catalysts for 4-chlorophenol degradation, Chemosphere, 105 (2014) 152–159.
  18. X.M. Xu, J.F. Wang, J. Tian, X. Wang, J. Dai, X. Liu, Hydrothermal and post-heat treatments of TiO2/ZnO composite powder and its photodegradation behavior on methyl orange, Ceram. Int., 37 (2011) 2201–2206.
  19. Z.H. Zhuge, X.J. Liu, T.Q. Chen, Y.Y. Gong, C. Li, L.Y. Niu, S.Q. Xu, X.T. Xu, Z.A. Alothman, C.Q. Sun, J.G. Shapter, Y. Yamauchi, Highly efficient photocatalytic degradation of different hazardous contaminants by CaIn2S4-Ti3C2Tx Schottky heterojunction: an experimental and mechanism study, Chem. Eng. J., 421 (2020) 127838, doi: 10.1016/j.cej.2020.127838.
  20. X.J. Liu, B.B. Liu, L. Li, Z.H. Zhuge, P.B. Chen, C. Li, Y.Y. Gong, L.Y. Niu, J.Y. Liu, L. Lei, C.Q. Sun, Cu2In2ZnS5/Gd2O2S: Tb for full solar spectrum photoreduction of Cr(VI) and CO2 from UV/vis to near-infrared light, Appl. Catal., B, 249 (2019) 82–90.
  21. B.B. Liu, X.J. Liu, J.Y. Liu, C.J. Feng, Z. Li, C. Li, Y.Y. Gong, L.K. Pan, S.Q. Xu, C.Q. Sun, Efficient charge separation between UiO-66 and ZnIn2S4 flowerlike 3D microspheres for photoelectronchemical properties, Appl. Catal., B, 226 (2018) 234–241.
  22. Z.X. Ren, X.J. Liu, Z.H. Zhuge, Y.Y. Gong, C.Q. Sun, MoSe2/ZnO/ZnSe hybrids for efficient Cr(VI) reduction under visible light irradiation, Chin. J. Catal., 41 (2020) 180–187.
  23. B.B. Liu, X.J. Liu, L. Li, Z.H. Zhuge, Y.Q. Li, C. Li, Y.Y. Gong, L.Y. Niu, S.Q. Xu, C.Q. Sun, CaIn2S4 decorated WS2 hybrid for efficient Cr(VI) reduction, Appl. Surf. Sci., 484 (2019) 300–306.
  24. R.S. Sabry, Y.K. Al-Haidarie, M.A. Kudhier, Synthesis and photocatalytic activity of TiO2 nanoparticles prepared by sol–gel method, J. Sol-Gel Sci. Technol., 78 (2016) 299–306.
  25. T. Theivasanthi, M. Alagar, Titanium dioxide (TiO2) nanoparticles XRD analyses: an insight, Chem. Phys., 1307 (2013) 1091
  26. G.A. Tompsett, L. Krogh, D.W. Griffin, W.C. Conner, Hysteresis and scanning behavior of mesoporous molecular sieves, Langmuir, 21 (2005) 8214–8225.
  27. R. Beranek, H. Kisch, Tuning the optical and photoelectrochemical properties of surface-modified TiO2, Photochem. Photobiol. Sci., 7 (2008) 40–48.
  28. G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer, R.T. Williams, Photoluminescence and FTIR study of ZnO nanoparticles: the impurity and defect perspective, Phys. Status Solidi A, 3581 (2006) 3577–3581.
  29. H. Kumar, R. Rani, Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route, Int. Lett. Chem. Phys. Astron., 14 (2013) 26–36.
  30. M.A. Gondal, A.M. Ilyas, T.A. Fasasi, M.A. Dastageer, Z.S. Seddigi, T.F. Qahtan, M. Faiz, G.D. Khattak, Synthesis of green TiO2/ZnO/CdS hybrid nano-catalyst for efficient light harvesting using an elegant pulsed laser ablation in liquids method, Appl. Surf. Sci., 357 (2015) 2217–2222.
  31. Z. Mesgari, M. Gharagozlou, A. Khosravi, K. Gharanjig, Spectrophotometric studies of visible light induced photocatalytic degradation of methyl orange using phthalocyanine-modified Fe-doped TiO2 nanocrystals, Spectrochim. Acta, Part A., 92 (2012) 148–153.
  32. S. Mohammadzadeh, M.E. Olya, A.M. Arabi, A. Shariati, M.R. Khosravi Nikou, Synthesis, characterization and application of ZnO-Ag as a nanophotocatalyst for organic compounds degradation, mechanism and economic study, J. Environ. Sci., 35 (2016) 194–207.
  33. N. Sobana, M. Swaminathan, The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO, Sep. Purif. Technol., 56 (2007) 101–107.
  34. L.K. Wang, Y.T. Hung, N.K. Shammas, Advanced Physicochemical Treatment Processes, Humana Press, New Jersey, 2006, pp. 463–481.
  35. A. Hernández Battez, R. González, J.L. Viesca, J.E. Fernández, J.M. Díaz Fernández, A. Machado, R. Chou, J. Riba, CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants, Wear, 265 (2008) 422–428.
  36. K. Siwińska-Stefańska, A. Kubiak, A. Piasecki, J. Goscianska, G. Nowaczyk, S. Jurga, T. Jesionowski, TiO2-ZnO binary oxide systems: Comprehensive characterization and tests of photocatalytic activity, Materials (Basel), 11 (2018) 841, doi: 10.3390/ma11050841.