References

  1. M.S. Diallo, A. Street, R. Sustich, J. Duncan, N. Savage, Nanotechnology Applications for Clean Water: Solutions for Improving Water Quality, A volume in Micro and Nano Technologies, William Andrew, Norwich, New York, 2009.
  2. M.J. Yoo, H.B. Park, Effect of hydrogen peroxide on properties of graphene oxide in Hummers Method, Carbon, 141 (2019) 515–522.
  3. Office of Water, ’The Clean Water and Drinking Water Gap Analysis,’ United States Environmental Protection Agency, Washington, D.C., 2002, p. 5.
  4. K.E. Drexler, Engines of Creation: The Coming Era of Nanotechnology (1987, September 16). Retrieved January 19, Doubleday Publishers, London, 2019, Available at: http:// edrexler.com/p/06/00/EOC_Cover.html
  5. F. Pendolino, N. Armata, Graphene Oxide in Environmental Remediation Process, Springer, Switzerland, 2017.
  6. G. Nabi, M. Ali, S. Khan, S. Kumar, The crisis of water shortage and pollution in Pakistan: risk to public health, biodiversity, and ecosystem, Environ. Sci. Pollut. Res., 26 (2019) 10443–10445.
  7. A. Ahmed, I. Shafique, Perception of household in regards to water pollution: an empirical evidence from Pakistan, Environ. Sci. Pollut. Res., 26 (2019) 8543–8551.
  8. K. He, G. Chen, G. Zeng, A. Chen, Z. Huang, J. Shi, T. Huang, M. Peng, L. Hu, Three-dimensional graphene supported catalysts for organic dyes degradation, Appl. Catal., B, 228 (2018) 19–28.
  9. M. Cametti, Z. Džolić, New frontiers in hybrid materials: noble metal nanoparticles – supramolecular gel systems, Chem. Commun., 50 (2016) 8273–8286.
  10. N.H. Syed, J. Ahmad, N.A. Khan, M.A. Shafiq, N. Khan, A lowcost wastewater treatment unit for reducing the usage of fresh water at car wash stations in Pakistan, Pak. J. Sci. Ind. Res., 62 (2019) 57–66.
  11. M.S. Abdel-Raouf, A.R.M. Abdul-Raheim, Removal of heavy metals from industrial waste water by biomassbased materials: a review, J. Pollut. Eff. Contr., 5 (2017) 180, doi: 10.4172/2375-4397.1000180.
  12. T.T.N. Le, V.T. Le, M.U. Dao, Q.V. Nguyen, T.T. Vu, M.H. Nguyen, H.S. Le, Preparation of magnetic graphene oxide/chitosan composite beads for effective removal of heavy metals and dyes from aqueous solutions, Chem. Commun., 206 (2019) 1337–1352.
  13. J. Tang, Y. Song, F. Zhao, S. Spinney, J. da Silva Bernardes, K.C. Tam, Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal, Carbohydr. Polym., 208 (2019) 404–412.
  14. S. Nizamuddin, M.T.H. Siddiqui, N.M. Mubarak, H.A. Baloch, E.C. Abdullah, S.A. Mazari, G.J. Griffin, M.P. Srinivasan, A. Tanksale, Chapter 17 – Iron oxide nanomaterials for the removal of heavy metals and dyes from wastewater, S. Thomas, D. Pasquini, S.-Y. Leu, D.A. Gopakumar, Eds., Nanoscale Materials in Water Purification: Micro and Nano Technologies, Elsevier, Amsterdam, Netherlands, 2019, pp. 447–472.
  15. P.M. Dellamatrice, M.E. Silva-Stenico, L.A.B. de Moraes, M.F. Fiore, R.T.R. Monteiro, Degradation of textile dyes by cyanobacteria, Braz. J. Microbiol., 48 (2017) 25–31.
  16. A.G. Varghese, S.A. Paul, M.S. Latha, Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents, Environ. Chem. Lett., 17 (2019) 867–877.
  17. N. Minju, K. Venkat Swaroop, K. Haribabu, V. Sivasubramanian, P. Senthil Kumar, Removal of fluoride from aqueous media by magnesium oxide-coated nanoparticles, Desal. Water Treat., 53 (2015) 2905–2914.
  18. S. Yu, X. Wang, X. Tan, X. Wang, Sorption of radionuclides from aqueous systems onto graphene oxide-based materials: a review, Inorg. Chem. Front., 2 (2015) 593–612.
  19. S. Song, S. Zhang, S. Huang, R. Zhang, L. Yin, Y. Hu, X. Wang, A novel multi-shelled Fe3O4@MnOx hollow microspheres for immobilizing U(VI) and Eu(III), Chem. Eng. J., 355 (2019) 697–709.
  20. G. Neeraj, S. Krishnan, P.S. Kumar, K.R. Shriaishvarya, V.V. Kumar, Performance study on sequestration of copper ions from contaminated water using newly synthesized high effective chitosan coated magnetic nanoparticles, J. Mol. Liq., 214 (2016) 335–346.
  21. S. Yu, X. Wang, S. Yang, G. Sheng, A. Alsaedi, T. Hayat, X. Wang, Interaction of radionuclides with natural and manmade materials using XAFS technique, Sci. China Chem., 60 (2017) 170–187.
  22. M. Montaña, A. Camacho, I. Serrano, R. Devesa, L. Mati, I. Vallés, Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal, J. Environ. Radioact., 125 (2013) 86–92.
  23. V. Mikušová, O. Lukačovičová, E. Havránek, P. Mikuš, Radionuclide X-ray fluorescence analysis of selected elements in drug samples with 8-hydroxyquinoline preconcentration, J. Radioanal. Nucl. Chem., 299 (2014) 1645–1652.
  24. S. Zhang, J. Li, X. Wang, Y. Huang, M. Zeng, J. Xu, In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis, ACS Appl. Mater. Interfaces, 6 (2014) 22116–22125.
  25. V. Radchenko, J.W. Engle, J.J. Wilson, J.R. Maassen, F.M. Nortier, W.A. Taylor, M.E. Fassbender, Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes, J. Chromatogr. A, 1380 (2015) 55–63.
  26. Y. Zou, X. Wang, Y. Ai, Y. Liu, J. Li, Y. Ji, X. Wang, Coagulation behavior of graphene oxide on nanocrystallined Mg/Al layered double hydroxides: batch experimental and theoretical calculation study, Environ. Sci. Technol., 50 (2016) 3658–3667.
  27. H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved Hummers Method, Sci. Rep., 6 (2016) 36143, doi: 10.1038/srep36143.
  28. N. Alipour, H. Namazi, Removing Paraquat and Nile blue from aqueous solution using double-oxidized graphene oxide coated by polydopamine nanocomposite, Int. J. Environ. Sci. Technol., 16 (2019) 3203–3210.
  29. A. Murcia-Salvador, J.A. Pellicer, M.I. Fortea, V.M. Gómez- López, M.I. Rodríguez-López, E. Núñez-Delicado, J.A. Gabaldón, Adsorption of Direct Blue 78 using chitosan and cyclodextrins as adsorbents, Polymers (Basel), 11 (2019) 1003, doi: 10.3390/ polym11061003.
  30. K. Tewari, G. Singhal, R.K. Arya, Adsorption removal of Malachite green dye from aqueous solution, Rev. Chem. Eng., 34 (2018) 427–453.
  31. M.S. Tizo, L.A.V. Blanco, A.C.Q. Cagas, B.R.B.D. Cruz, J.C. Encoy, J.V. Gunting, V.I.F. Mabayo, Efficiency of calcium carbonate from eggshells as an adsorbent for cadmium removal in aqueous solution, Sustainable Environ. Res., 28 (2018) 326–332.
  32. P.V. Kamat, Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support, J. Phys. Chem. Lett., 1 (2009) 520–527.
  33. P. Cadden-Zimansky, M. Shinn, G.T. Myers, Y. Chu, M.J. Dalrymple, H.C. Travaglini, Formation of the n = 0 Landau level in hybrid graphene, J. Phys. Commun., 2 (2018) 051001.
  34. I.A. Ovid’Ko, Metal-graphene nanocomposites with enhanced mechanical properties: a review, Rev. Adv. Mater. Sci., 38 (2014) 190–200.
  35. A. Dimiev, D.V. Kosynkin, L.B. Alemany, P. Chaguine, J.M. Tour, Pristine graphite oxide, J. Am. Chem. Soc., 134 (2012) 2815–2822.
  36. A.A. Alqadami, M. Naushad, Z.A. ALOthman, M. Alsuhybani, M. Algamdi, Excellent adsorptive performance of a new nanocomposite for removal of toxic Pb(II) from aqueous environment: adsorption mechanism and modeling analysis, J. Hazard. Mater., 389 (2020) 121896, doi: 10.1016/j. jhazmat.2019.121896.
  37. T. Ahmed, S. Imdad, K. Yaldram, S.M. Raza, Awareness and attitude about nanotechnology in Pakistan, J. Nano Res., 7 (2015) 44–51.
  38. V. Modi, S. Akst, D. Davison, 1715: acute cadmium toxicity causing multisystem organ failure, J. Respir. Crit. Care Sleep Med., 47 (2019) 831, doi: 10.1097/01.ccm.0000552454.38387.20.
  39. S. Chehreh Chelgani, M. Rudolph, R. Kratzsch, D. Sandmann, J. Gutzmer, A review of graphite beneficiation techniques, Miner. Process. Extr. Metall. Rev.: Int. J., 37 (2016) 58–68.
  40. A. George, R. Ganesan, T. Thangeeswari, Redox deposition of manganese oxide nanoparticles on graphite electrode by immersion technique for electrochemical super capacitors, Indian J. Sci. Technol., 9 (2016) 85782, doi: 10.17485/ijst/2016/ v9i1/85782.
  41. J.H. Kang, T. Kim, J. Choi, J. Park, Y.S. Kim, M.S. Chang, C.R. Park, Hidden second oxidation step of Hummers Method, Chem. Mater., 28 (2016) 756–764.
  42. D. Liu, Q. Bian, Y. Li, Y. Wang, A. Xiang, H. Tian, Effect of oxidation degrees of graphene oxide on the structure and properties of poly(vinyl alcohol) composite films, Compos. Sci. Technol., 129 (2016) 146–152.
  43. P. Feicht, J. Biskupek, T.E. Gorelik, J. Renner, C.E. Halbig, M. Maranska, S. Eigler, Brodie’s or Hummers’ method: oxidation conditions determine the structure of graphene oxide, Chem. Eur. J., 25 (2019) 8955–8959.
  44. B. Paulchamy, G. Arthi, B.D. Lignesh, A simple approach to stepwise synthesis of graphene oxide nanomaterial, J. Nanomed. Nanotechnol., 6 (2015) 1000253, doi: 10.4172/ 2157-7439.1000253.
  45. W. Chen, L. Yan, Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure, Nanoscale, 2 (2010) 559–563.
  46. S. Basu, S. Hazra, Graphene–noble metal nano-composites and applications for hydrogen sensors, Carbon, 3 (2017) 29, doi: 10.3390/c3040029.
  47. Y. Tian, F. Wang, Y. Liu, F. Pang, X. Zhang, Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection, Electrochim. Acta, 146 (2014) 646–653.
  48. K.T. Dissanayake, W. Rohini de Silva, A. Kumarasinghe, K.M. Nalin de Silva, Synthesis of graphene and graphene oxide based nanocomposites and their characterization, SAITM, 1 (2014) 75–78.
  49. H. Chang, H. Wu, Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications, Energy Environ. Sci., 6 (2013) 3483–3507.
  50. B. Zahed, H. Hosseini-Monfared, A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: support effect, Appl. Surf. Sci., 328 (2015) 536–547.
  51. Q. Bao, D. Zhang, P. Qi, Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection, J. Colloid Interface Sci., 360 (2011) 463–470.
  52. A.A. Velayati, P. Farnia, Nontuberculous Mycobacteria (NTM): Microbiological, Clinical and Geographical Distribution, Academic Press, London, 2019.
  53. L. Shi, J. Chen, L. Teng, L. Wang, G. Zhu, S. Liu, L. Ren, The antibacterial applications of graphene and its derivatives, Small, 12 (2016) 4165–4184.
  54. Y. Zhu, S. Murali, W. Cai, X. Li, J. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22 (2010) 3906–3924.
  55. J. Hwang, T. Yoon, S.H. Jin, J. Lee, T.S. Kim, S.H. Hong, S. Jeon, Enhanced mechanical properties of graphene/copper nanocomposites using a molecular‐level mixing process, Adv. Mater., 25 (2013) 6724–6729.
  56. S. Chaiyakun, N. Witit-Anun, N. Nuntawong, P. Chindaudom, S. Oaew, C. Kedkeaw, P. Limsuwan, Preparation and characterization of graphene oxide nanosheets, Procedia Eng., 32 (2012) 759–764.
  57. D.W. Lee, L.V. de Los Santos, J.W. Seo, L.L. Felix, A.D. Bustamante, J.M. Cole, C.H.W. Barnes, The structure of graphite oxide: investigation of its surface chemical groups, J. Phys. Chem., 114 (2010) 5723–5728,
  58. J. Gao, F. Bao, L. Feng, K. Shen, Q. Zhu, D. Wang, C. Yan, Functionalized graphene oxide modified polysebacic anhydride as drug carrier for levofloxacin controlled release, RSC Adv., 1 (2011) 1737–1744.
  59. M.S. Eluyemi, M.A. Eleruja, A.V. Adedeji, B. Olofinjana, O. Fasakin, O.O. Akinwunmi, O.O. Ilori, A.T. Famojuro, S.A. Ayinde, E.O.B. Ajayi, Synthesis and characterization of graphene oxide and reduced graphene oxide thin films deposited by spray pyrolysis method, Graphene, 5 (2016) 143–154.
  60. L. Shahriary, A.A. Athawale, Graphene oxide synthesized by using modified hummers approach, Int. J. Renewable Energy Environ. Eng., 2 (2014) 58–63.
  61. C.H. Manoratne, S.R.D. Rosa, I.R.M. Kottegoda, XRD-HTA, UV visible, FTIR and SEM interpretation of reduced graphene oxide synthesized from high purity vein graphite, Mater. Sci. Res. India, 14 (2017) 19–30.
  62. S. Thakur, N. Karak, Alternative methods and nature-based reagents for the reduction of graphene oxide: a review, Carbon, 94 (2015) 224–242.
  63. W.W. Mhike, H.J. Kruger, D. Lombaard, Characterization of commercial expandable graphite fire retardants, Thermochim. Acta, 584 (2014) 8–16.
  64. D.C. Weindorf, S. Chakraborty, Portable X-ray fluorescence spectrometry analysis of soils, Soil Sci. Soc. Am. J., 84 (2020) 1384–1392.
  65. Z. Sofer, O. Jankovský, P. Šimek, L. Soferová, D. Sedmidubský, M. Pumera, Highly hydrogenated graphene via active hydrogen reduction of graphene oxide in the aqueous phase at room temperature, Nanoscale, 6 (2014) 2153–2160.
  66. J. Liu, H. Yan, M.J. Reece, K. Jiang, Toughening of zirconia/ alumina composites by the addition of graphene platelets, J. Eur. Ceram. Soc., 32 (2012) 4185–4193.
  67. E. Aliyev, V. Filiz, M. Khan, Y.J. Lee, C. Abetz, V. Abetz, Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris, Nanomaterials, 9 (2019) 1180, doi: 10.3390/nano9081180.
  68. H. Pardo, R. Faccio, F.M. Araújo-Moreira, O.F. De Lima, A.W. Mombrú, Synthesis and characterization of stable room temperature bulk ferromagnetic graphite, Carbon, 44 (2006) 565–569.
  69. A.U. Liyanage, E.U. Ikhuoria, A.A. Adenuga, V.T. Remcho, M.M. Lerner, Synthesis and characterization of lowgeneration polyamidoamine (PAMAM) dendrimer-sodium montmorillonite (Na-MMT) clay nanocomposites, Inorg. Chem., 52 (2013) 4603–4610.
  70. T.S. Sreeprasad, S.M. Maliyekkal, K.P. Lisha, T. Pradeep, Reduced graphene oxide–metal/metal oxide composites: facile synthesis and application in water purification, J. Hazard. Mater., 186 (2011) 921–931.
  71. M. Rafi, B. Samiey, C.-H. Cheng, Study of adsorption mechanism of Congo red on graphene oxide/PAMAM nanocomposite, Materials, 11 (2018) 496, doi: 10.3390/ma11040496.
  72. D. Wang, L. Liu, X. Jiang Adsorption and removal of Malachite green from aqueous solution using magnetic bcyclodextringraphene oxide nanocomposites as adsorbents, Colloids Surf., A, 466 (2015)166–173.
  73. S. Debnath, A. Maity, K. Pillay, Impact of process parameters on removal of Congo red by graphene oxide from aqueous solution, J. Environ. Chem. Eng., 2 (2014) 260–272.
  74. H. Hou, R. Zhou, P. Wu, L. Wu, Removal of Congo red dye from aqueous solution with hydroxyapatite/chitosan composite, Chem. Eng. J., 211 (2012) 336–342.
  75. A.C. Obreja, D. Cristea, R. Gavrila, V. Schiopu, A. Dinescu, M. Danila, F. Comanescu, Isocyanate functionalized graphene/ P3HT based nanocomposites, Appl. Surf. Sci., 276 (2013) 458–467.
  76. W. Xing, G. Lalwani, I. Rusakova, B. Sitharaman, Degradation of graphene by hydrogen peroxide, Part. Part. Syst. Char., 31 (2014) 745–750.
  77. Z. Aly, A. Graulet, N. Scales, T. Hanley, Removal of aluminium from aqueous solutions using PAN-based adsorbents: characterisation, kinetics, equilibrium and thermodynamic studies, Environ. Sci. Pollut. Res., 21 (2014) 3972–3986.
  78. I. Yin, J. Zhang, I.S. Zhao, M.L. Mei, Q. Li, C.H. Chu, The antibacterial mechanism of silver nanoparticles and its application in dentistry, J. Nanomedicine, 15 (2020) 2555–2562.
  79. H. kim, S.-O. Kang, S.G. Park, H.S. Park, Adsorption isotherms and kinetics of cationic and anionic dyes on three-dimensional reduced graphene oxide macrostructure, J. Ind. Eng. Chem., 21 (2015) 1191–1196.
  80. P. Ramachandran, R. Vairamuthu, S. Ponnusamy, Adsorption isotherms, kinetics, thermodynamics and desorption studies of reactive Orange 16 on activated carbon derived from Ananas comosus (L.) carbon, J. Eng. Appl. Sci., 6 (2011) 15–26.
  81. R.S. Krishna, J. Mishra, S.K. Das, S.M. Mustakim, An overview of current research trends on graphene and it’s applications, World Sci. News., 132 (2019) 206–219.