References

  1. P.C. Bhomick, A. Supong, D. Sinha, Organic pollutants in water and its remediation using biowaste activated carbon as greener adsorbent, Int. J. Hydrol., 1 (2017) 91‒92.
  2. C.P. Nanseu-Njiki, G.K. Dedzo, E. Ngameni, Study of the removal of paraquat from aqueous solution by biosorption onto Ayous (Triplochiton schleroxylon) sawdust, J. Hazard. Mater., 179 (2010) 63−71.
  3. N.L. Nemerow, J.A. Franklin, J.S. Patrick, A.S. Joseph, Environmental Engineering: Water, Wastewater, Soil and Groundwater Treatment and Remediation, 6th ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.
  4. S.M. Ahmed, S.F. Rabie, M.E. Maha, Reduction of organic matter from municipal wastewater at low cost using green synthesis nano iron extracted from black tea: artificial intelligence with regression analysis, Egypt. J. Pet., 29 (2020) 9–20.
  5. A.E. Rodríguez-Mata, L.E. Amabilis-Sosa, A. Roé-Sosa, J.M. Barrera-Andrade, J.G. Rangel-Peraza, M.G. Salinas-Juárez, Quantification of recalcitrant organic compounds during their removal test by a novel and economical method based on chemical oxygen demand analysis, Korean J. Chem. Eng., 36 (2019) 423–432.
  6. H.E. Ezerie, R.B.M.K. Shamsul, H.I. Mohamed, A. Malakahmad, U.I. Salihi, Chemical oxygen demand removal from wastewater by integrated bioreactor, J. Environ. Sci. Technol., 8 (2015) 238–243.
  7. M. Ziati, O. Cherifi, Z. Yahia, Removal of chemical oxygen demand from tannery wastewater by Fenton’s reagent, Larhyss J., 33 (2018) 111–121.
  8. C.H. Dhias, S. Sarto, M. Aswati, H. Muslikhin, Decreasing COD in sugarcane vinasse using the fenton reaction: the effect of processing parameters, Catalysts, 9 (2019) 881, doi: 10.3390/ catal9110881.
  9. D. Zawawi, A. Halizah, A.A. Aziz, N. Nazlizan, B.R. Mohd, A. Zulkifli, Suspended solid, color, COD and oil and grease removal from biodiesel wastewater by coagulation and flocculation processes, Procedia. – Social Behav. Sci., 195 (2015) 2407–2411.
  10. Z.M. Tahereh, A.E. Ali, E. Hadi, M. Mehdi, H.S. Mohammad, T.G. Mohammad, M. Morteza, P. Mohsen, Optimization and economic evaluation of modified coagulation–flocculation process for enhanced treatment of ceramic-tile industry wastewater, AMB Express, 8 (2018) 172, doi: 10.1186/ s13568-018-0702-4.
  11. U. İbrahim, Ö. Oktay, K. İsmail, NF-RO membrane performance for treating the effluent of an organized industrial zone wastewater treatment plant: effect of different UF types, Water, 9 (2017) 506, doi: 10.3390/w9070506.
  12. E. Haaz, D. Fozer, T. Nagy, N. Valentinyi, A. Andre, J. Matyasi, J. Balla, P. Mizsey, A.J. Toth, Vacuum evaporation and reverse osmosis treatment of process wastewaters containing surfactant material: COD reduction and water reuse, Clean Technol. Environ. Policy, 21 (2019) 861–870.
  13. A.K. Chopra, K.S. Arun, Effect of electrochemical treatment on the COD removal from biologically treated municipal wastewater, Desal. Water Treat., 53 (2015) 41–47.
  14. G. Umesh, J. Min, P.J. Sokhee, D. Park, S.J. Park, H. Yu, S.-E. Oh, Electrochemical removal of ammonium nitrogen and COD of domestic wastewater using platinum coated titanium as an anode electrode, Energies, 12 (2019) 883, doi: 10.3390/ en12050883.
  15. P. Yan, Z. Yinian, X. Zelong, L. Rongrong, Adsorption Removal of COD from Wastewater by the aCtivated Carbons Prepared from Sugarcane Bagasse, The 5th International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2011), IEEE, iCBBE, Wuhan, China, 2011, pp. 1–4.
  16. A.A.N. ElAziz, A.E. Reda, E.M. Tamer, S.M. Yakout, M.A. El-Khateeb, M.M.S. Ali, H.M. Ali, Adsorption studies on the removal of COD and BOD from treated sewage using activated carbon prepared from date palm waste, Environ. Sci. Pollut. Res., 24 (2017) 22284–22293.
  17. M.M. Ahson Aslam, Z.M. Khan, M. Sultan, Y. Niaz, M.H. Mahmood, M. Shoaib, A. Shakoor, M. Ahmad, Performance evaluation of trickling filter-based wastewater treatment system utilizing cotton sticks as filter media, Pol. J. Environ. Stud., 26 (2017) 1955–1962.
  18. Q. Xu, G. Siracusa, S. Di Gregorio, Q. Yuan, COD removal from biologically stabilized landfill leachate using Advanced Oxidation Processes (AOPs), Process Saf. Environ. Prot., 20 (2018) 278–285.
  19. D. Al deen Atallah Aljuboury, P. Palaniandy, H.B.A. Aziz, S. Feroz, Treatment of petroleum wastewater by conventional and new technologies – a review, Global NEST J., 19 (2017) 439–452.
  20. K.R. Kalash, T.M. Albayati, Remediation of oil refinery wastewater implementing functionalized mesoporous materials MCM-41 in batch and continuous adsorption process, Desal. Water Treat., 220 (2021) 130–141.
  21. A.M. Mansouri, F. Shahrezaei, A.A.L. Zinatizadeh, A.H. Azandaryani, M. Pirsaheb, K. Sharafi, Preparation of poly ethyleneimine (PEI))/nano titania (TiO2) multilayer film on quartz tube by layer-by-layer self-assembly and its applications for petroleum refinery wastewater treatment, J. Taiwan Inst. Chem. Eng., 45 (2014) 2501–2510.
  22. Z. Yang, X. Qiu, Z. Fang, T. Pokeung, Transport of nano zerovalent iron supported by mesoporous silica microspheres in porous media, Water Sci. Technol., 17 (2015) 1800–1805.
  23. T. Al-dahri, A.A. AbdulRazak, S. Rohani, Preparation and characterization of Linde-Type A zeolite (LTA) from coal fly ash by microwave-assisted synthesis method: its application as adsorbent for removal of anionic dyes, Int. J. Coal Prep. Util., (2020), doi: 10.1080/19392699.2020.1792456.
  24. I.H. Khalaf, F.T. Al-Sudani, A.A. AbdulRazak, T. Aldahri, S. Rohani, Optimization of congo red dye adsorption from wastewater by a modified commercial zeolite catalyst using response surface modeling approach, Water Sci. Technol., 83 (2021) 1369–1383.
  25. T.M. Albayati, A.A. Sabri, D.B. Abed, Adsorption of binary and multi heavy metals ions from aqueous solution by amine functionalized SBA-15 mesoporous adsorbent in a batch system, Desal. Water Treat., 151 (2019) 315–321.
  26. B. Yang, J. Tang, Electrochemical oxidation treatment of wastewater using activated carbon electrode, Int. J. Electrochem. Sci., 13 (2018) 1096–1104.
  27. L. Yan, H. Ma, B. Wang, Y. Wang, Y. Chen, Electrochemical treatment of petroleum refinery wastewater with threedimensional multi-phase electrode, Desalination, 276 (2011) 397–400.
  28. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, Chemical Oxygen Demand (COD) 5220, American Public Health Association, American Water Works Association, Water Environment Federation, Washington, USA, 1999.
  29. S.T. Kadhum, G.Y. Alkindi, T.M. Albayati, Eco friendly adsorbents for removal of phenol from aqueous solution employing nanoparticle zero-valent iron synthesized from modified green tea bio-waste and supported on silty clay, Chin. J. Chem. Eng., (2020), doi: 10.1016/j.cjche.2020.07.031.
  30. T.M. Albayati, A.M. Doyle, Purification of aniline and nitrossubistituted aniline contaminants from aqueous solution using beta zeolite, Chem.: Bulg. J. Sci. Educ., 23 (2014) 105–114.
  31. B. Yana, A. Sarswat, S. Tiwari, D. Mohan, A. Pandey, P.R. Solanki, Synthesis of L-cysteine stabilized zero-valent iron (nZVI) nanoparticles for lead remediation from water, Environ. Nanotechnol. Monit. Manage., 7 (2017) 34–45.
  32. T.M. Albayati, A.A. Sabri, D.B. Abed, Functionalized SBA-15 by amine group for removal of Ni(II) heavy metal ion in the batch adsorption system, Desal. Water Treat., 174 (2020) 301–310.
  33. T.M. Albayati, Application of nanoporous material MCM-41 in a membrane adsorption reactor (MAR) as a hybrid process for removal of methyl orange, Desal. Water Treat., 151 (2019) 138–144.
  34. T.M. Albayati, A.M. Doyle, Shape-selective adsorption of substituted aniline pollutants from wastewater, Adsorpt. Sci. Technol., 31 (2013) 459–468.
  35. S.A. Kim, S. Kamala-Kannan, K.-J. Lee, Y.-J. Park, P.J. Shea, W.-H. Lee, H.-M. Kim, B.-T. Oh, Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite, Chem. Eng. J., 217 (2013) 54–60.
  36. A.R. Esfahani, A.F. Firouzi, G. Sayyad, A. Kiasat, Lead removal from aqueous solutions using polyacrylic acid-stabilized zerovalent iron nanoparticles, Res. J. Environ. Earth Sci., 5 (2013) 548–555.
  37. S.M. Alardhi, T.M. Albayati, J.M. Alrubaye, A hybrid adsorption membrane process for removal of dye from synthetic and actual wastewater, Chem. Eng. Process. Process Intensif., 157 (2020) 108–113.
  38. S.M. Alardhi, J.M. Alrubaye, T.M. Albayati, Adsorption of methyl green dye onto MCM-41: equilibrium, kinetics and thermodynamic studies, Desal. Water Treat., 179 (2020) 323–331.
  39. O. Abdelwahab, N.K. Amin, E.-S.Z. El-Ashtoukhy, Electrochemical removal of phenol from oil refinery wastewater, J. Hazard. Mater., 163 (2009) 711–716.
  40. S.T. Kadhum, G.Y. Alkindi, T.M. Albayati, Remediation of phenolic wastewater implementing nano zerovalent iron as a granular third electrode in an electrochemical reactor, Int. J. Environ. Sci. Technol., (2021), doi: 10.1007/s13762–021–03205–5.
  41. J. Zhu, H. Zhao, J. Ni, Fluoride distribution in electrocoagulation defluoridation process, Sep. Purif. Technol., 56 (2007) 184–191.
  42. Z. Chi, Z. Wang, Y. Liu, G. Yang, Preparation of organosolv lignin-stabilized nano zero-valent iron and its application as granular electrode in the tertiary treatment of pulp and paper wastewater, Chem. Eng. J., 331 (2018) 317–325.
  43. C. Zexu, Z. Wang, C. Huanqing, B. Pingping, L. Lucia, Bentonitesupported nanoscale zero-valent iron granulated electrodes for industrial wastewater remediation, R. Soc. Chem., 7 (2017) 44605–44613.
  44. C. Wang, Y.-K. Huang, Q. Zhao, M. Ji, Treatment of secondary effluent using a three-dimensional electrode system: COD removal, biotoxicity assessment, and disinfection effects, Chem. Eng. J., 243 (2014) 1–6.
  45. A.Z. Juan, P. Gema, B. Sonia, A.C. Jose, J.R. Juan, Intensification of the Fenton process by increasing the temperature, Ind. Eng. Chem. Res., 50 (2011) 866–870.
  46. O. Sahu, Electro-oxidation and chemical oxidation treatment of sugar industry wastewater with ferrous material: an investigation of physicochemical characteristic of sludge, S. Afr. J. Chem. Eng., 28 (2019) 26–38.
  47. X.H.L. Thi, M. Bechelany, J. Champavert, M. Cretin, A highly active based graphene cathode for the electro-Fenton reaction, RSC Adv., 5 (2015) 42536–42539.
  48. H. Shemer, K.G. Linden, Degradation and by-product formation of diazinon in water during UV and UV/H2O2 treatment, J. Hazard. Mater., 136 (2006) 553–559.
  49. R.G. Saratale, K.-J. Hwang, J.-Y. Song, G.D. Saratale, D.-S. Kim, Electrochemical oxidation of phenol for wastewater treatment using Ti/PbO2 electrode, J. Environ. Eng., 142 (2016) 04015064.
  50. E.-S.Z. El-Ashtoukhy, Y.A. El-Taweel, O. Abdelwahab, E.M. Nassef, Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor, Int. J. Electrochem. Sci., 8 (2013) 1534–1550.
  51. K.J. Laidler, J.H. Meister, Physical Chemistry, 3rd ed., Pearson, Boston, 1999.
  52. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, USA, 2003.