References

  1. J. Wąsowski, A. Piotrowska, Rozkład organicznych zanieczyszczeń wody w procesach pogłębionego utleniania, Ochr. Środowiska., nr 2 (2002) 27–32.
  2. A. Kowal, M.Ś. Bróż, Oczyszczanie wody. Podstawy teroretyczne i technologiczne, procesy i urządzenia, 6th ed., Wydawnictwo Naukowe PWN, Warszawa, 2009.
  3. A.M. Anielak, Chemiczne i fizykochemiczne oczyszczanie ścieków, Wydawnictwo Naukowe PWN, Warszawa, 2007.
  4. C.K. Duesterberg, T.D. Waite, Process optimization of fenton oxidation using kinetic modeling, Environ. Sci. Technol., 40 (2006) 4189–4195.
  5. H. Zhang, H.J. Choi, C.P. Huang, Optimization of Fenton process for the treatment of landfill leachate, J. Hazard. Mater., 125 (2005) 166–174.
  6. A. Goi, M. Trapido, Hydrogen peroxide photolysis, Fenton reagent and photo-Fenton for the degradation of nitrophenols: a comparative study, Chemosphere, 46 (2002) 913–922.
  7. S.M. Kim, A. Vogelpohl, Degradation of organic pollutants by the photo-Fenton-process, Chem. Eng. Technol., 21 (1998) 187–191.
  8. B. Utset, J. Garcia, J. Casado, X. Domènech, J. Peral, Replacement of H2O2 by O2 in Fenton and photo-Fenton reactions, Chemosphere, 41 (2000) 1187–1192.
  9. A.G. Chakinala, P.R. Gogate, A.E. Burgess, D.H. Bremner, Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process, Ultrason. Sonochem., 15 (2008) 49–54.
  10. M. Wang, G. Yang, H. Feng, Z. Lv, H. Min, Optimization of Fenton process for decoloration and COD removal in tobacco wastewater and toxicological evaluation of the effluent, Water Sci. Technol., 63 (2011) 2471–2477.
  11. E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique, J. Hazard. Mater., 98 (2003) 33–50.
  12. P. Riesz, T. Kondo, C.M. Krishna, Free radical formation by ultrasound in aqueous solutions. A spin trapping study, Free Radical Res. Commun., 10 (1990) 27–35.
  13. D.H. Geske, A.H. Maki, Electrochemical generation of free radicals and their study by electron spin resonance spectroscopy; the nitrobenzene anion radical, J. Am. Chem. Soc., 82 (1960) 2671–2676.
  14. A.G.G. Mata, S.V. Martínez, A.Á. Gallegos, M. Ahmadi, J.A.H. Pérez, F. Ghanbari, S.S. Martínez, Recent overview of solar photocatalysis and solar photo-Fenton processes for wastewater treatment, Int. J. Photoenergy, 2017 (2017) 8528063, doi: 10.1155/2017/8528063.
  15. K. Barbusiński, Intensyfikacja procesu oczyszczania ścieków i stabilizacji osadów nadmiernych z wykorzystaniem odczynnika Fentona, Zesz. Nauk. Inżynieria Środowiska/Politech. Śląska. z., 50 (2004) 7–169.
  16. Y. Wang, Y. Sun, W. Li, W. Tian, A. Irini, High performance of nanoscaled Fe2O3 catalyzing UV-Fenton under neutral condition with a low stoichiometry of H2O2: kinetic study and mechanism, Chem. Eng. J., 267 (2015) 1–8.
  17. C.L. Hsueh, Y.H. Huang, C.C. Wang, C.Y. Chen, Degradation of azo dyes using low iron concentration of Fenton and Fentonlike system, Chemosphere, 58 (2005) 1409–1414.
  18. E. Brillas, J.C. Calpe, J. Casado, Mineralization of 2,4-D by advanced electrochemical oxidation processes, Water Res., 34 (2000) 2253–2262.
  19. B. Gözmen, M.A. Oturan, N. Oturan, O. Erbatur, Indirect electrochemical treatment of Bisphenol A in water via electrochemically generated Fenton’s reagent, Environ. Sci. Technol., 37 (2003) 3716–3723.
  20. A. Krzysztoszek, J. Bogacki, J. Naumczyk, Study on removal of heavy metals from landfill leachate by Fenton’s process and modified Fenton’s process, Sci. Rev. – Eng. Environ. Sci., 51 (2011) 36–42.
  21. J. Długosz, Metoda Fentona i jej modyfikacje w oczyszczaniu odcieków – praca przeglądowa, Arch. Gospod. Odpad. i Ochr. Środowiska. Vol. 16, n (2014) 33–42.
  22. A. Janda, T. Marcinkowski, Modification possibilities for oxidation effectiveness of hard degradable organic pollutants, Ochr. Środowiska., 41 (2019) 47–53.
  23. F. Fu, Q. Wang, B. Tang, Effective degradation of C.I. Acid Red 73 by advanced Fenton process, J. Hazard. Mater., 174 (2010) 17–22.
  24. D. Kulikowska, Charactarization of organics and methods treatment of leachate from stabilized municipal landfills, Ecol. Chem. Eng. S, 16 (2009) 389–402.
  25. J. Perkowski, M. Sidor, Badania rozkładu niejonowych związków powierzchniowo czynnych w wybranych procesach pogłębionego utleniania, Ochr. Środowiska. R. 29, nr (2007) 18–25.
  26. S.S.A. Amr, H.A. Aziz, New treatment of stabilized leachate by ozone/Fenton in the advanced oxidation process, Waste Manage., 32 (2012) 1693–1698.
  27. V.J.P. Vilar, T.F.C. V Silva, M.A.N. Santos, A. Fonseca, I. Saraiva, R.A.R. Boaventura, Evaluation of solar photo-Fenton parameters on the pre-oxidation of leachates from a sanitary landfill, Sol. Energy, 86 (2012) 3301–3315.
  28. S.G. Michael, I.M. Kordatou, V.G. Beretsou, T. Jäger, C. Michael, T. Schwartz, D.F. Kassinos, Solar photo-Fenton oxidation followed by adsorption on activated carbon for the minimisation of antibiotic resistance determinants and toxicity present in urban wastewater, Appl. Catal., B, 244 (2019) 871–880.
  29. S. Papoutsakis, S.M. Cuevas, N. Gondrexon, S. Baup, S. Malato, C. Pulgarin, Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: an initial approach, Ultrason. Sonochem., 22 (2015) 527–534.
  30. S. Foteinis, J.M. Monteagudo, A. Durán, E. Chatzisymeon, Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale, Sci. Total Environ., 612 (2018) 605–612.
  31. M. Khandarkhaeva, A. Batoeva, M. Sizykh, D. Aseev, N. Garkusheva, Photo-Fenton-like degradation of bisphenol A by persulfate and solar irradiation, J. Environ. Manage., 249 (2019) 109348, doi: 10.1016/j.jenvman.2019.109348.
  32. G. Matyszczak, K. Krzyczkowska, A. Fidler, A novel, twoelectron catalysts for the electro-Fenton process, J. Water Process Eng., 36 (2020) 101242, doi: 10.1016/j.jwpe.2020.101242.
  33. D. Gümüş, F. Akbal, Comparison of Fenton and electro-Fenton processes for oxidation of phenol, Process Saf. Environ. Prot., 103 (2016) 252–258.
  34. H. Liu, C. Wang, X. Zhong, X. Xuan, C. Jiang, H. Cui, A novel electro-fenton process for water treatment: reaction-controlled pH adjustment and performance assessment, Environ. Sci. Technol., 41 (2007) 2937–2942.
  35. S. Qiu, D. He, J. Ma, T. Liu, T.D. Waite, Kinetic modeling of the electro-fenton process: quantification of reactive oxygen species generation, Electrochim. Acta, 176 (2015) 51–58.
  36. A. Shahedi, A.K. Darban, F. Taghipour, A.J. Zanjani, A review on industrial wastewater treatment via electrocoagulation processes, Curr. Opin. Electrochem., 22 (2020) 154–169.
  37. X. Meng, S.A. Khoso, F. Jiang, Y. Zhang, T. Yue, J. Gao, S. Lin, R. Liu, Z. Gao, P. Chen, L. Wang, H. Han, H. Tang, W. Sun, Y. Hu, Removal of chemical oxygen demand and ammonia nitrogen from lead smelting wastewater with high salts content using electrochemical oxidation combined with coagulation– flocculation treatment, Sep. Purif. Technol., 235 (2020) 116233, doi: 10.1016/j.seppur.2019.116233.
  38. S. Li, W. Wang, Y. Liu, W. Zhang, Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: a pilot-scale demonstration, Chem. Eng. J., 254 (2014) 115–123.
  39. N. Jaafarzadeh, F. Ghanbari, M. Moradi, Photo-electrooxidation assisted peroxymonosulfate for decolorization of acid brown 14 from aqueous solution, Korean J. Chem. Eng., 32 (2015) 458–464.
  40. M. Ahmadi, F. Ghanbari, S.M. Bidgoli, Photoperoxi-coagulation using activated carbon fiber cathode as an efficient method for benzotriazole removal from aqueous solutions: modeling, optimization and mechanism, J. Photochem. Photobiol., A, 322–323 (2016) 85–94.
  41. F. Vogel, J. Harf, A. Hug, P.R.V. Rohr, The mean oxidation number of carbon (MOC)—a useful concept for describing oxidation processes, Water Res., 34 (2000) 2689–2702.
  42. E.R. Burns, C. Marshall, Correction for chloride interference in the chemical oxygen demand test, J. (Water Pollut. Control Fed., 37 (1965) 1716–1721.
  43. I. Talinli, G.K. Anderson, Interference of hydrogen peroxide on the standard cod test, Water Res., 26 (1992) 107–110.
  44. L. Gu, J.Y. Nie, N. Zhu, L. Wang, H.P. Yuan, Z. Shou, Enhanced Fenton’s degradation of real naphthalene dye intermediate wastewater containing 6-nitro-1-diazo-2-naphthol-4-sulfonic acid: a pilot scale study, Chem. Eng. J., 189–190 (2012) 108–116.
  45. Y. Wang, W. Li, A. Irini, A novel and quick method to avoid H2O2 interference on COD measurement in Fenton system by Na2SO3 reduction and O2 oxidation, Water Sci. Technol., 68 (2013) 1529–1535.
  46. Y. Flores, R. Flores, A.A. Gallegos, Heterogeneous catalysis in the Fenton-type system reactive black 5/H2O2, J. Mol. Catal. A Chem., 281 (2008) 184–191.
  47. R. Falk, A.D. Well, Many faces of the correlation coefficient, J. Stat. Educ., 5 (1997) 11910597, doi: 10.1080/10691898.1997.11910597.