References
- J. Wąsowski, A. Piotrowska, Rozkład organicznych
zanieczyszczeń wody w procesach pogłębionego utleniania,
Ochr. Środowiska., nr 2 (2002) 27–32.
- A. Kowal, M.Ś. Bróż, Oczyszczanie wody. Podstawy
teroretyczne i technologiczne, procesy i urządzenia, 6th ed.,
Wydawnictwo Naukowe PWN, Warszawa, 2009.
- A.M. Anielak, Chemiczne i fizykochemiczne oczyszczanie
ścieków, Wydawnictwo Naukowe PWN, Warszawa, 2007.
- C.K. Duesterberg, T.D. Waite, Process optimization of fenton
oxidation using kinetic modeling, Environ. Sci. Technol.,
40 (2006) 4189–4195.
- H. Zhang, H.J. Choi, C.P. Huang, Optimization of Fenton
process for the treatment of landfill leachate, J. Hazard. Mater.,
125 (2005) 166–174.
- A. Goi, M. Trapido, Hydrogen peroxide photolysis, Fenton
reagent and photo-Fenton for the degradation of nitrophenols:
a comparative study, Chemosphere, 46 (2002) 913–922.
- S.M. Kim, A. Vogelpohl, Degradation of organic pollutants
by the photo-Fenton-process, Chem. Eng. Technol., 21 (1998)
187–191.
- B. Utset, J. Garcia, J. Casado, X. Domènech, J. Peral, Replacement
of H2O2 by O2 in Fenton and photo-Fenton reactions,
Chemosphere, 41 (2000) 1187–1192.
- A.G. Chakinala, P.R. Gogate, A.E. Burgess, D.H. Bremner,
Treatment of industrial wastewater effluents using
hydrodynamic cavitation and the advanced Fenton process,
Ultrason. Sonochem., 15 (2008) 49–54.
- M. Wang, G. Yang, H. Feng, Z. Lv, H. Min, Optimization of
Fenton process for decoloration and COD removal in tobacco
wastewater and toxicological evaluation of the effluent, Water
Sci. Technol., 63 (2011) 2471–2477.
- E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation
as an advanced oxidation technique, J. Hazard. Mater., 98 (2003)
33–50.
- P. Riesz, T. Kondo, C.M. Krishna, Free radical formation by
ultrasound in aqueous solutions. A spin trapping study, Free
Radical Res. Commun., 10 (1990) 27–35.
- D.H. Geske, A.H. Maki, Electrochemical generation of
free radicals and their study by electron spin resonance
spectroscopy; the nitrobenzene anion radical, J. Am. Chem.
Soc., 82 (1960) 2671–2676.
- A.G.G. Mata, S.V. Martínez, A.Á. Gallegos, M. Ahmadi,
J.A.H. Pérez, F. Ghanbari, S.S. Martínez, Recent overview of
solar photocatalysis and solar photo-Fenton processes for
wastewater treatment, Int. J. Photoenergy, 2017 (2017) 8528063,
doi: 10.1155/2017/8528063.
- K. Barbusiński, Intensyfikacja procesu oczyszczania ścieków i
stabilizacji osadów nadmiernych z wykorzystaniem odczynnika
Fentona, Zesz. Nauk. Inżynieria Środowiska/Politech. Śląska.
z., 50 (2004) 7–169.
- Y. Wang, Y. Sun, W. Li, W. Tian, A. Irini, High performance
of nanoscaled Fe2O3 catalyzing UV-Fenton under neutral
condition with a low stoichiometry of H2O2: kinetic study and
mechanism, Chem. Eng. J., 267 (2015) 1–8.
- C.L. Hsueh, Y.H. Huang, C.C. Wang, C.Y. Chen, Degradation
of azo dyes using low iron concentration of Fenton and Fentonlike
system, Chemosphere, 58 (2005) 1409–1414.
- E. Brillas, J.C. Calpe, J. Casado, Mineralization of 2,4-D by
advanced electrochemical oxidation processes, Water Res.,
34 (2000) 2253–2262.
- B. Gözmen, M.A. Oturan, N. Oturan, O. Erbatur, Indirect
electrochemical treatment of Bisphenol A in water via
electrochemically generated Fenton’s reagent, Environ. Sci.
Technol., 37 (2003) 3716–3723.
- A. Krzysztoszek, J. Bogacki, J. Naumczyk, Study on removal
of heavy metals from landfill leachate by Fenton’s process
and modified Fenton’s process, Sci. Rev. – Eng. Environ. Sci.,
51 (2011) 36–42.
- J. Długosz, Metoda Fentona i jej modyfikacje w oczyszczaniu
odcieków – praca przeglądowa, Arch. Gospod. Odpad. i Ochr.
Środowiska. Vol. 16, n (2014) 33–42.
- A. Janda, T. Marcinkowski, Modification possibilities for
oxidation effectiveness of hard degradable organic pollutants,
Ochr. Środowiska., 41 (2019) 47–53.
- F. Fu, Q. Wang, B. Tang, Effective degradation of C.I. Acid Red
73 by advanced Fenton process, J. Hazard. Mater., 174 (2010)
17–22.
- D. Kulikowska, Charactarization of organics and methods
treatment of leachate from stabilized municipal landfills, Ecol.
Chem. Eng. S, 16 (2009) 389–402.
- J. Perkowski, M. Sidor, Badania rozkładu niejonowych
związków powierzchniowo czynnych w wybranych procesach
pogłębionego utleniania, Ochr. Środowiska. R. 29, nr (2007)
18–25.
- S.S.A. Amr, H.A. Aziz, New treatment of stabilized leachate
by ozone/Fenton in the advanced oxidation process, Waste
Manage., 32 (2012) 1693–1698.
- V.J.P. Vilar, T.F.C. V Silva, M.A.N. Santos, A. Fonseca,
I. Saraiva, R.A.R. Boaventura, Evaluation of solar photo-Fenton
parameters on the pre-oxidation of leachates from a sanitary
landfill, Sol. Energy, 86 (2012) 3301–3315.
- S.G. Michael, I.M. Kordatou, V.G. Beretsou, T. Jäger, C. Michael,
T. Schwartz, D.F. Kassinos, Solar photo-Fenton oxidation
followed by adsorption on activated carbon for the minimisation
of antibiotic resistance determinants and toxicity present in
urban wastewater, Appl. Catal., B, 244 (2019) 871–880.
- S. Papoutsakis, S.M. Cuevas, N. Gondrexon, S. Baup, S. Malato,
C. Pulgarin, Coupling between high-frequency ultrasound and
solar photo-Fenton at pilot scale for the treatment of organic
contaminants: an initial approach, Ultrason. Sonochem.,
22 (2015) 527–534.
- S. Foteinis, J.M. Monteagudo, A. Durán, E. Chatzisymeon,
Environmental sustainability of the solar photo-Fenton process
for wastewater treatment and pharmaceuticals mineralization
at semi-industrial scale, Sci. Total Environ., 612 (2018) 605–612.
- M. Khandarkhaeva, A. Batoeva, M. Sizykh, D. Aseev,
N. Garkusheva, Photo-Fenton-like degradation of bisphenol
A by persulfate and solar irradiation, J. Environ. Manage.,
249 (2019) 109348, doi: 10.1016/j.jenvman.2019.109348.
- G. Matyszczak, K. Krzyczkowska, A. Fidler, A novel, twoelectron
catalysts for the electro-Fenton process, J. Water
Process Eng., 36 (2020) 101242, doi: 10.1016/j.jwpe.2020.101242.
- D. Gümüş, F. Akbal, Comparison of Fenton and electro-Fenton
processes for oxidation of phenol, Process Saf. Environ. Prot.,
103 (2016) 252–258.
- H. Liu, C. Wang, X. Zhong, X. Xuan, C. Jiang, H. Cui, A novel
electro-fenton process for water treatment: reaction-controlled
pH adjustment and performance assessment, Environ. Sci.
Technol., 41 (2007) 2937–2942.
- S. Qiu, D. He, J. Ma, T. Liu, T.D. Waite, Kinetic modeling of the
electro-fenton process: quantification of reactive oxygen species
generation, Electrochim. Acta, 176 (2015) 51–58.
- A. Shahedi, A.K. Darban, F. Taghipour, A.J. Zanjani, A review
on industrial wastewater treatment via electrocoagulation
processes, Curr. Opin. Electrochem., 22 (2020) 154–169.
- X. Meng, S.A. Khoso, F. Jiang, Y. Zhang, T. Yue, J. Gao, S. Lin,
R. Liu, Z. Gao, P. Chen, L. Wang, H. Han, H. Tang, W. Sun,
Y. Hu, Removal of chemical oxygen demand and ammonia
nitrogen from lead smelting wastewater with high salts content
using electrochemical oxidation combined with coagulation–
flocculation treatment, Sep. Purif. Technol., 235 (2020) 116233,
doi: 10.1016/j.seppur.2019.116233.
- S. Li, W. Wang, Y. Liu, W. Zhang, Zero-valent iron nanoparticles
(nZVI) for the treatment of smelting wastewater: a pilot-scale
demonstration, Chem. Eng. J., 254 (2014) 115–123.
- N. Jaafarzadeh, F. Ghanbari, M. Moradi, Photo-electrooxidation
assisted peroxymonosulfate for decolorization of
acid brown 14 from aqueous solution, Korean J. Chem. Eng.,
32 (2015) 458–464.
- M. Ahmadi, F. Ghanbari, S.M. Bidgoli, Photoperoxi-coagulation
using activated carbon fiber cathode as an efficient method
for benzotriazole removal from aqueous solutions: modeling,
optimization and mechanism, J. Photochem. Photobiol., A,
322–323 (2016) 85–94.
- F. Vogel, J. Harf, A. Hug, P.R.V. Rohr, The mean oxidation
number of carbon (MOC)—a useful concept for describing
oxidation processes, Water Res., 34 (2000) 2689–2702.
- E.R. Burns, C. Marshall, Correction for chloride interference in
the chemical oxygen demand test, J. (Water Pollut. Control Fed.,
37 (1965) 1716–1721.
- I. Talinli, G.K. Anderson, Interference of hydrogen peroxide on
the standard cod test, Water Res., 26 (1992) 107–110.
- L. Gu, J.Y. Nie, N. Zhu, L. Wang, H.P. Yuan, Z. Shou, Enhanced
Fenton’s degradation of real naphthalene dye intermediate
wastewater containing 6-nitro-1-diazo-2-naphthol-4-sulfonic
acid: a pilot scale study, Chem. Eng. J., 189–190 (2012) 108–116.
- Y. Wang, W. Li, A. Irini, A novel and quick method to avoid
H2O2 interference on COD measurement in Fenton system
by Na2SO3 reduction and O2 oxidation, Water Sci. Technol.,
68 (2013) 1529–1535.
- Y. Flores, R. Flores, A.A. Gallegos, Heterogeneous catalysis in
the Fenton-type system reactive black 5/H2O2, J. Mol. Catal. A
Chem., 281 (2008) 184–191.
- R. Falk, A.D. Well, Many faces of the correlation coefficient, J. Stat.
Educ., 5 (1997) 11910597, doi: 10.1080/10691898.1997.11910597.