References

  1. J. Stachelek, C. Ford, D. Kincaid, K. King, H. Miller, R. Nagelkirk, The National Eutrophication Survey: lake characteristics and historical nutrient concentrations, Earth System Sci. Data, 10 (2018) 81–86.
  2. T.T. Zhang, L.L. Wang, Z.X. He, D. Zhang, Growth inhibition and biochemical changes of cyanobacteria induced by emergent macrophyte Thalia dealbata roots, Biochem. Syst. Ecol., 39 (2011) 88–94.
  3. B. Morelli, T.R. Hawkins, B. Niblick, A.D. Henderson, H.E. Golden, J.E. Compton, E.J. Cooter, J.C. Bare, Critical review of eutrophication models for life cycle assessment, Environ. Sci. Technol., 52 (2018) 9562–9578.
  4. M.B. Charlton, M.J. Bowes, M.G. Hutchins, H.G. Orr, R. Soley, P. Davison, Mapping eutrophication risk from climate change: future phosphorus concentrations in English rivers, Sci. Total Environ., 613 (2018) 1510–1526.
  5. Y.H. Han, T. Fu, S.S. Wang, H.T. Yu, P. Xiang, W.X. Zhang, D.L. Chen, M. Li, Efficient phosphate accumulation in the newly isolated Acinetobacter junii strain LH4, 3 Biotech, 8 (2018) 1–12, doi: 10.1007/s13205-018-1338-4.
  6. D.W. Schindler, S.R. Carpenter, S.C. Chapra, R.E. Hecky, D.M. Orihel, Reducing phosphorus to curb lake eutrophication is a success, Environ. Sci. Technol., 50 (2016) 8923–8929.
  7. H. Duan, M. Tao, S.A. Loiselle, W. Zhao, Z. Cao, R. Ma, X. Tang, MODIS observations of cyanobacterial risks in a eutrophic lake: implications for long-term safety evaluation in drinking-water source, Water Res., 122 (2017) 455–470.
  8. M. Lurling, G. Waajen, F.V. Oosterhout, Humic substances interfere with phosphate removal by lanthanum modified clay in controlling eutrophication, Water Res., 54 (2014) 78–88.
  9. K. Sukacova, M. Trtilek, T. Rataj, Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment, Water Res., 71 (2015) 55–63.
  10. G. Waajen, F.V. Oosterhout, G. Douglas, M. Lurling, Management of eutrophication in Lake De Kuil (The Netherlands) using combined flocculant – Lanthanum modified bentonite treatment, Water Res., 97 (2016) 83–95.
  11. Z. Yang, H. Zhang, D. Zhang, J. Pang, Study on Biological Denitrification Removal Technologies Treating Eutrophication Water, T.C. Zhang, P. Ouyang, S. Kaplan, B. Skarnes, Eds., Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012), Lecture Notes in Electrical Engineering, Springer, Berlin, Heidelberg, 2014, pp. 1229–1236.
  12. M. Zamparas, I. Zacharias, Restoration of eutrophic freshwater by managing internal nutrient loads. A review, Sci. Total Environ., 496 (2014) 551–562.
  13. I.M.W. Wijaya, E.S. Soedjono, Domestic wastewater in Indonesia: challenge in the future related to nitrogen content, Int. J. Geomate, 15 (2018) 32–41.
  14. R. Arabgol, P.A. Vanrolleghem, M. Piculell, R. Delatolla, The impact of biofilm thickness-restraint and carrier type on attached growth system performance, solids characteristics and settleability, Environ. Sci.: Water Res. Technol., 6 (2020) 2843–2855.
  15. H. Eom, Investigation of Effluent Nitrogen Derived from Conventional Activated Sludge (CAS) and Biological Nutrient Removal (BNR) Systems and Its Impact on Algal Growth in Receiving Waters, Civil Engineering, University of Massachusetts Amherst, 2016.
  16. S. Kwon, T.S. Kim, G.H. Yu, JH. Jung, HD. Park, Bacterial community composition and diversity of a full-scale integrated fixed-film activated sludge system as investigated by pyrosequencing, J. Microbiol. Biotechnol., 20 (2010) 1717–1723.
  17. E.S. Kim, Y.J. Kim, J. Choi, Biological fixed film, Water Environ. Res., 89 (2017) 1047–1065.
  18. J. Zhu, C.F. Lin, J.C.M. Kao, P.Y. Yang, Evaluation of potential integration of entrapped mixed microbial cell and membrane bioreactor processes for biological wastewater treatment/reuse, Clean Technol. Environ. Policy, 13 (2011) 153–160.
  19. D.S. Manu, A.K. Thalla, The combined effects of carbon/ nitrogen ratio, suspended biomass, hydraulic retention time and dissolved oxygen on nutrient removal in a laboratoryscale anaerobic-anoxic-oxic activated sludge biofilm reactor, Water Sci. Technol., 77 (2018) 248–259.
  20. Y. Shao, Y. Shi, A. Mohammed, Y. Liu, Wastewater ammonia removal using an integrated fixed-film activated sludgesequencing batch biofilm reactor (IFAS-SBR): comparison of suspended flocs and attached biofilm, Int. Biodeterior. Biodegrad., 116 (2017) 38–47.
  21. S.V. Mohan, N.C. Rao, P.N. Sarma, Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR), J. Hazard. Mater., 144 (2007) 108–117.
  22. Q. Lu, Z.L. He, D.A. Graetz, P.J. Stoffella, X. Yang, Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.), Environ. Sci. Pollut. Res., 17 (2010) 84–96.
  23. R.F. Polomski, M.D. Taylor, D.G. Bielenberg, W.C. Bridges, S.J. Klaine, T. Whitwell, Nitrogen and phosphorus remediation by three floating aquatic macrophytes in greenhouse-based laboratory-scale subsurface constructed wetlands, Water Air Soil Pollut., 197 (2009) 223–232.
  24. A.B. Pedersen, E. Gothe, T. Riis, M.T. O’Hare, Functional trait composition of aquatic plants can serve to disentangle multiple interacting stressors in lowland streams, Sci. Total Environ., 543 (2016) 230–238.
  25. M.T. O’Hare, A.B. Pedersen, I. Baumgarte, A. Freeman, I.D.M. Gunn, A.N. Lazar, R. Sinclair, A.J. Wade, M.J. Bowes, Responses of aquatic plants to eutrophication in rivers: a revised conceptual model, Front. Plant Sci., 9 (2018) 1–13.
  26. Y. Zhang, X. Liu, B. Qin, K. Shi, J. Deng, Y. Zhou, Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: implications for lake ecological restoration, Sci. Rep., 6 (2016) 1–12.
  27. Z.J. Chen, Y.H. Tian, Y. Zhang, B.R. Song, H.C. Li, Z.H. Chen, Effects of root organic exudates on rhizosphere microbes and nutrient removal in the constructed wetlands, Ecol. Eng., 92 (2016) 243–250.
  28. X. Shi, H. Sun, H. Pan, Y. Chen, Z. Jiang, J. Liu, S. Wang, Growth and efficiency of nutrient removal by Salix jiangsuensis J172 for phytoremediation of urban wastewater, Environ. Sci. Pollut. Res., 23 (2016) 2715–2723.
  29. L. Wang, H. Lin, Y. Dong, Y. He, Effects of cropping patterns of four plants on the phytoremediation of vanadium-containing synthetic wastewater, Ecol. Eng., 115 (2018) 27–34.
  30. W.H. Wang, Y. Wang, Z. Li, C.Z. Wei, J.C. Zhao, L.Q. Sun, Effect of a strengthened ecological floating bed on the purification of urban landscape water supplied with reclaimed water, Sci. Total Environ., 622 (2018) 1630–1639.
  31. Y. Wang, C. Zhu, H. Yang, X. Zhang, Phosphate fertilizer affected rhizospheric soils: speciation of cadmium and phytoremediation by Chlorophytum comosum, Environ. Sci. Pollut. Res., 24 (2017) 3934–3939.
  32. P. Yu, Response of Chlorophytum comosum Rhizosphere and Root Exudates to Pb Stress and Its Influence on Pb Contaminated Soil Remediation, Anhui Normal University, 2019 (in Chinese).
  33. Y. Wang, A. Yan, J. Dai, N. Wang, D. Wu, Accumulation and tolerance characteristics of cadmium in Chlorophytum comosum: a popular ornamental plant and potential Cd hyperaccumulator, Environ. Monit. Assess., 184 (2012) 929–937.
  34. Y. Wang, A. Yan, T. Wu, X. Zhang, Accumulation and remediation of cadmium-polluted soil by a potential cadmiumhyperaccumulator Chlorophytum comosum, Energy Sources Part A, 34 (2012) 1523–1533.
  35. H. Wu, K. Xu, X. He, X. Wang, Removal of nitrogen by three plant species in hydroponic culture: plant uptake and microbial degradation, Water Air Soil Pollut., 227 (2016) 1–11.
  36. Q. Wu, Y. Hu, S. Li, S. Peng, H. Zhao, Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement, Bioresour. Technol., 211 (2016) 451–456.
  37. M.L. Bartucca, T. Mimmo, S. Cesco, D.D. Buono, Nitrate removal from polluted water by using a vegetated floating system, Sci. Total Environ., 542 (2016) 803–808.
  38. S.D. Hothem, K.A. Marley, R.A. Larson, Photochemistry in Hoagland’s nutrient solution, J. Plant Nutr., 26 (2003) 845–854.
  39. F. Pan, Y. Wang, Y. Gui, Hydroponic Chlorophytum comosum cultivating in distinct nutrient concentration, combined with biofilm treating eutrophic water bodies, Water Environ. J., 35 (2021) 593–605.
  40. SEPA, Water and Wastewater Monitoring Analysis Method, 3rd ed., China Environmental Science Press, Beijing, 1997.
  41. SEPA, China’s National Environmental Quality Standards for Surface Water (GB3838-2002), Ministry of Ecology and Environment of the People’s Republic of China, 2002.
  42. L. Janczewski, A.T. Holownia, Biofilm-based membrane reactors - selected aspects of the application and microbial layer control, Desal. Water Treat., 57 (2016) 22909–22916.
  43. B.E. Rittmann, D. Stilwell, A. Ohashi, The transient-state, multiple-species biofilm model for biofiltration processes, Water Res., 36 (2002) 2342–2356.
  44. H. Wu, X. Wang, X. He, S. Zhang, R. Liang, J. Shen, Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland, Sci. Total Environ., 598 (2017) 697–703.
  45. P. Yu, F. Pan, Y. Wang, J. Li, Effects of phytol on soil enzyme activity and lead availability in lead-contaminated soil, J. Soil Water Conserv., 33 (2019) 358–363 (in Chinese).