References

  1. S. Giannakis, K.A. Lin, F. Ghanbari, A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs), Chem. Eng. J., 406 (2021) 127083, doi: 10.1016/j.cej.2020.127083.
  2. W. Zhang, C. Wei, C. Feng, B. Yan, N. Li, P. Peng, J. Fu, Coking wastewater treatment plant as a source of polycyclic aromatic hydrocarbons (PAHs) to the atmosphere and health-risk assessment for workers, Sci. Total Environ., 432 (2012) 396–403.
  3. X. Yu, C. Wei, H. Wu, Z. Jiang, R. Xu, Improvement of biodegradability for coking wastewater by selective adsorption of hydrophobic organic pollutants, Sep. Purif. Technol., 151 (2015) 23–30.
  4. D. Guo, Q. Shi, B. He, X. Yuan, Different solvents for the regeneration of the exhausted activated carbon used in the treatment of coking wastewater, J. Hazard. Mater., 186 (2011) 1788–1793.
  5. L. Chu, J. Wang, J. Dong, H. Liu, X. Sun, Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide, Chemosphere, 86 (2012) 409–414.
  6. S. Fodor, G. Kovács, K. Hernádi, V. Danciu, L. Baia, Z. Pap, Shape tailored Pd nanoparticles’ effect on the photocatalytic activity of commercial TiO2, Catal. Today, 284 (2017) 137–145.
  7. J.S. Melo, S. Kholi, A.W. Patwardhan, S.F. D’Souza, Effect of oxygen transfer limitations in phenol biodegradation, Process Biochem., 40 (2005) 625–628.
  8. X.-X. Wei, Z.-Y. Zhang, Q.-L. Fan, X.-Y. Yuan, D.-S. Guo, The effect of treatment stages on the coking wastewater hazardous compounds and their toxicity, J. Hazard. Mater., 239–240 (2012) 135–141.
  9. D.R. Joshi, Y. Zhang, Z. Tian, Y.X. Gao, M. Yang, Performance and microbial community composition in a long-term sequential anaerobic-aerobic bioreactor operation treating coking wastewater, Appl. Microbiol. Biotechnol., 100 (2016) 8191–8202.
  10. Y. Huang, X. Hou, S. Liu, J. Ni, Correspondence analysis of bio-refractory compounds degradation and microbiological community distribution in anaerobic filter for coking wastewater treatment, Chem. Eng. J., 304 (2016) 864–872.
  11. D. Wu, X. Yi, R. Tang, C. Feng, C. Wei, Single microbial fuel cell reactor for coking wastewater treatment: simultaneous carbon and nitrogen removal with zero alkaline consumption, Sci. Total Environ., 621 (2018) 497–506.
  12. Y. Zhao, L. Fan, D. Yang, Z. Dong, Y. Wang, X. An, Comparative study of electrochemical performance and microbial flora in microbial fuel cells by using three kinds of substrates, Chem. Res. Chin. Univ., 35 (2019) 292–298.
  13. X. Jin, E. Li, S. Lu, Z. Qiu, Q. Sui, Coking wastewater treatment for industrial reuse purpose: combining biological processes with ultrafiltration, nanofiltration and reverse osmosis, J. Environ. Sci. (China), 25 (2013) 1565–1574.
  14. I. Vázquez, J. Rodríguez-Iglesias, E. Marañón, L. Castrillón, M. Álvarez, Removal of residual phenols from coke wastewater by adsorption, J. Hazard. Mater., 147 (2007) 395–400.
  15. N. Wang, Q. Zhao, H. Xu, W. Niu, L. Ma, D. Lan, L. Hao, Adsorptive treatment of coking wastewater using raw coal fly ash: adsorption kinetic, thermodynamics and regeneration by Fenton process, Chemosphere, 210 (2018) 624–632.
  16. W.-x. Jiang, W. Zhang, B.-j. Li, J. Duan, Y. Lv, W.-d. Liu, W.-c. Ying, Combined Fenton oxidation and biological activated carbon process for recycling of coking plant effluent, J. Hazard. Mater., 189 (2011) 308–314.
  17. P. Lai, H.Z. Zhao, C. Wang, J.R. Ni, Advanced treatment of coking wastewater by coagulation and zero-valent iron processes, J. Hazard. Mater., 147 (2007) 232–239.
  18. J. Li, X. Yuan, H. Zhao, F. Li, Z. Lei, Z. Zhang, Highly efficient one-step advanced treatment of biologically pretreated coking wastewater by an integration of coagulation and adsorption process, Bioresour. Technol., 247 (2018) 1206–1209.
  19. M.S.P. Indu, K.G. Ashok, Anodic oxidation of coke oven wastewater: multiparameter optimization for simultaneous removal of cyanide, COD and phenol, J. Environ. Manage., 176 (2016) 45–53.
  20. W.-w. Liu, X.-y. Tu, X.-p. Wang, F.-q. Wang, W. Li, Pretreatment of coking wastewater by acid out, micro-electrolysis process with in situ electrochemical peroxidation reaction, Chem. Eng. J., 200–202 (2012) 720–728.
  21. P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination, 299 (2012) 1–15.
  22. A.G. Gutierrez-Mata, S. Velazquez-Martínez, A. Álvarez-Gallegos, M. Ahmadi, J.A. Hernández-Pérez, F. Ghanbari, S. Silva-Martínez, Recent overview of solar photocatalysis and solar photo-Fenton processes for wastewater treatment, Int. J. Photoenergy, 2017 (2017) 1–27.
  23. Z. Meng-Fu, Z. Yan, D. Cheng, S. Hong-Bo, Y. Xiu-Dong, C. Ping, W. Jian-You, Application and research progress of hydrocavitation in water treatment, Environ. Sci. Technol., 33 (2010) 445–449.
  24. K.S. Suslick, S.J. Doktycz, E.B. Flint, On the origin of sonoluminescence and sonochemistry, Ultrasonics, 28 (1990) 280–290.
  25. M. Gągol, A. Przyjazny, G. Boczkaj, Wastewater treatment by means of advanced oxidation processes based on cavitation – a review, Chem. Eng. J., 338 (2018) 599–627.
  26. V.B. Manisha, R.G. Parag, Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review, Ultrason. Sonochem., 21 (2014) 1–14.
  27. S. Shu-Ting, Hydro-Cavitation Combined with Chlorine Dioxide to Degrade Methyl Orange, North University of China, 2016, pp. 69.
  28. K. Wei-Dian, Study on Hydro-Cavitation Enhanced Chlorine Dioxide Degradation of Phenol Wastewater, North University of China, 2017, pp. 76.
  29. Z. Mojca, K. Tina, P. Martin, D. Matevž, K. Boris, Š. Brane, B. Željko, H. Ester, Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment, Ultrason. Sonochem., 20 (2013) 1104–1112.
  30. R.G. Parag, N.P. Pankaj, Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes, Ultrason. Sonochem., 25 (2015) 60–69.
  31. A.M. Torabi, R. Ghiaee, Decontamination of unsymmetrical dimethylhydrazine waste water by hydrodynamic cavitationinduced advanced Fenton process, Ultrason. Sonochem., 23 (2015) 257–265.
  32. G.C. Anand, R.G. Parag, E.B. Arthur, H.B. David, Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing, Chem. Eng. J., 152 (2009) 498–502.
  33. H.B. David, D.C. Stefano, G.C. Anand, C. Giancarlo, Mineralisation of 2,4-dichlorophenoxyacetic acid by acoustic or hydrodynamic cavitation in conjunction with the advanced Fenton process, Ultrason. Sonochem., 15 (2008) 416–419.
  34. S.E. Hanife, A. Omer, Final treatment of young, middle-aged, and stabilized leachates by Fenton process: optimization by response surface methodology, Desal. Water Treat., 54 (2015) 342–357.
  35. Y. Si-jing, Hydro-Cavitation Enhanced ClO2 to Crack the Mechanism of Methyl Orange and benzo[a]pyrene, North University of China, 2018, pp. 185.
  36. R.I. Ahmad, S.H. Fauziah, M. Sharifah, S.T. Kheng, Stabilized landfill leachate treatment by coagulation-flocculation coupled with UV-based sulfate radical oxidation process, Waste Manage., 76 (2018) 575–581.
  37. D. Yang, D.E. James, Treatment of landfill leachate by the Fenton process, Water Res., 40 (2006) 3683–3694.
  38. B. Su-Bei, Experimental Study on Advanced Treatment of Coking Wastewater by Fenton Method, Dalian Maritime University, 2020.
  39. L. Jia-Jia, Method validation of “water quality determination of chemical oxygen demand by dichromate method”, Green Technol., (2019) 111–112.
  40. W. Kun, Experimental Study on Coagulation/Hydraulic Cavitation Enhanced Chlorine Dioxide Combined Treatment of Landfill Leachate COD, North University of China, 2020, pp. 92.
  41. A.P.J. Scandelai, E. Sloboda Rigobello, B.L.C.D. Oliveira, C.R.G. Tavares, Identification of organic compounds in landfill leachate treated by advanced oxidation processes, Environ. Technol., 40 (2019) 730–741.
  42. M. Gągol, A. Przyjazny, G. Boczkaj, Effective method of treatment of industrial effluents under basic pH conditions using acoustic cavitation – a comprehensive comparison with hydrodynamic cavitation processes, Chem. Eng. Process., 128 (2018) 103–113.
  43. T. Pooja, P. Mihir, R.G. Parag, Degradation of carbamazepine using hydrodynamic cavitation combined with advanced oxidation processes, Ultrason. Sonochem., 40 (2018) 567–576.