References
- A.A. Vaidya, K.V. Datye, Environmental pollution during
chemical processing of synthetic fibres, Colourage, 14 (1982) 3–10.
- B. Qin, G. Zhu, G. Gao, Y. Zhang, W. Li, H.W. Paerl,
W.W. Carmichael, A drinking water crisis in lake Taihu, China:
linkage to climatic variability and lake management, Environ.
Manage., 45 (2010) 105–112.
- S. Vasudevan, M.A. Oturan, Electrochemistry: as cause and
cure in water pollution—an overview, Environ. Chem. Lett.,
12 (2014) 97–108.
- M. Cheng, G. Zeng, D. Huang, C. Lai, Y. Liu, C. Zhang,
J. Wan, L. Hu, C. Zhou, W. Xiong, Efficient degradation of
sulfamethazine in simulated and real wastewater at slightly
basic pH values using Co-SAM-SCS/H2O2 Fenton-like system,
Water Res., 138 (2018) 7–18.
- T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation
of dyes in textile effluent: a critical review on current treatment
technologies with a proposed alternative, Bioresour. Technol.,
77 (2001) 247–255.
- S. Papić, N. Koprivanac, A. Lončarić Božić, Removal of reactive
dyes from wastewater using Fe(III) coagulant, Color. Technol.,
116 (2000) 352–358.
- S.H. Lin, C.C. Lo, Treatment of textile wastewater by foam
flotation, Environ. Technol., 17 (1996) 841–849.
- A. Bousher, X. Shen, R.G.J. Edyvean, Removal of coloured
organic matter by adsorption onto low-cost waste materials,
Water Res., 31 (1997) 2084–2092.
- M. Arami, N.Y. Limaee, N.M. Mahmoodi, Investigation on the
adsorption capability of egg shell membrane towards model
textile dyes, Chemosphere, 65 (2006) 1999–2008.
- Z. Huang, Q. Sun, K. Lv, Z. Zhang, M. Li, B. Li, Effect of contact
interface between TiO2 and g-C3N4 on the photoreactivity of
g-C3N4/TiO2 photocatalyst: (001) vs (101) facets of TiO2, Appl.
Catal., B, 164 (2015) 420–427.
- K. Drew, G. Girishkumar, K. Vinodgopal, P.V. Kamat, Boosting
fuel cell performance with a semiconductor photocatalyst: TiO2/Pt-Ru hybrid catalyst for methanol oxidation, J. Phys. Chem. B,
109 (2005) 11851–11857.
- M.A. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study
on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO
photocatalyst, J. Hazard. Mater., 133 (2006) 226–232.
- A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang,
Comparative studies of operational parameters of degradation
of azo dyes in visible light by highly efficient WOx/TiO2
photocatalyst, J. Hazard. Mater., 177 (2010) 781–791.
- Y. Usami, T. Hongo, A. Yamazaki, Phosphate constituent effects
on the structure and photocatalytic properties of mesoporous
tungsten oxides, Microporous Mesoporous Mater., 158 (2012)
13–18.
- R.U. Meckenstock, M. Elsner, C. Griebler, T. Lueders, C. Stumpp,
J. Aamand, S.N. Agathos, H.J. Albrechtsen, Biodegradation:
updating the concepts of control for microbial cleanup in
contaminated aquifers, Environ. Sci. Technol., 49 (2015)
7073–7081.
- Y. Liu, F. Luo, S. Liu, S. Liu, X. Lai, X. Li, Y. Lu, Y. Li,
Aminated graphene oxide impregnated with photocatalytic
polyoxometalate for efficient adsorption of dye pollutants and
its facile and complete photoregeneration, Small, 13 (2017)
1603174, doi: 10.1002/smll.201603174.
- X. An, J.C. Yu, Y. Wang, Y.M. Hu, X.L. Yu, G.J. Zhang,
WO3 nanorods/graphene nanocomposites for high-efficiency
visible-light-driven photocatalysis and NO2 gas sensing,
J. Mater. Chem., 22 (2012) 8525–8531.
- J. Kaur, K. Anand, K. Anand, R.C. Singh, WO3 nanolamellae/reduced graphene oxide nanocomposites for highly sensitive
and selective acetone sensing, J. Mater. Sci., 53 (2018)
12894–12907.
- F.G. Wang, C.D. Valentin, G. Pacchioni, Doping of WO3 for
photocatalytic water splitting: hints from density functional
theory, J. Phys. Chem. C, 116 (2012) 8901–8909.
- D.M. Kabtamu, J.Y. Chen, Y.C. Chang, C.H. Wang,
Electrocatalytic activity of Nb-doped hexagonal WO3 nanowiremodified
graphite felt as a positive electrode for vanadium
redox flow batteries, J. Mater. Chem. A, 4 (2016) 11472–11480.
- E. Kamali, C. Zamani, E. Marzbanrad, B. Raissi, S. Nazarpour,
WO3-based NO2 sensors fabricated through low frequency
AC electrophoretic deposition, Sens. Actuators, B, 146 (2010)
165–170.
- P.N. Bhaumik, A soft templating strategy for the synthesis of
mesoporous materials: inorganic, organic-inorganic hybrid and
purely organic solids, Adv. Colloid Interface Sci., 189–190 (2013)
21–41.
- D. Gu, F. Schüth, Synthesis of non-siliceous mesoporous oxides,
Chem. Soc. Rev., 43 (2014) 313–344.
- Y. Liu, K. Lan, A.A. Bagabas, P. Zhang, W. Gao, J. Wang, Z. Sun,
J. Fan, A.A. Elzatahry, D. Zhao, Ordered acro/mesoporous TiO2
hollow microspheres with highly crystalline thin shells for
high-efficiency photoconversion, Small, 12 (2016) 860–867.
- P. Madhavi, P. Lakshitha, C.H. Kuo, S. Dharmarathna, S. Suib,
Ordered mesoporous mixed metal oxides: remarkable effect of
pore size on catalytic activity, Langmuir, 30 (2014) 8228−8237.
- F.P. Koffyberg, K. Dwight, A. Wold, Interband transitions of
semiconducting oxides determined from photoelectrolysis
spectra, Solid State Commun., 30 (1979) 433–437.
- G.R. Bamwenda, H. Arakawa, The visible light induced
photocatalytic activity of tungsten trioxide powders,
Appl. Catal. A, 210 (2001) 181–191.
- K. Pourzare, S. Farhadi, Y. Mansourpanah, Anchoring
H3PW12O40 on aminopropylsilanized spinel-type cobalt
oxide (Co3O4‐SiPrNH2/H3PW12O40): a novel nanohybrid
adsorbent for removing cationic organic dye pollutants from
aqueous solutions, Appl. Organomet. Chem., 32 (2017) e4341,
doi: 10.1002/aoc.4341.
- Q. Zheng, C. Lee, Visible light photoelectrocatalytic
degradation of methyl orange using anodized nanoporous
WO3, Electrochim. Acta, 115 (2014) 140–145.
- J. Luo, X. Zhou, L. Ma, X. Ning, L. Zhan, X. Xu, L. Xu, L. Zhang,
H. Ruan, Z. Zhang, Fabrication of WO3/Ag2CrO4 composites
with enhanced visible-light photodegradation towards methyl
orange, Adv. Powder Technol., 28 (2017) 1018–1027.
- J. Cao, B. Luo, H. Lin, S. Chen, Photocatalytic activity of
novel AgBr/WO3 composite photocatalyst under visible light
irradiation for methyl orange degradation, J. Hazard. Mater.,
190 (2011) 700–706.