References
- C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni,
A.B. Pandit, A critical review on textile wastewater treatments:
possible approaches, J. Environ. Manage., 182 (2016) 351–366.
- A. Albahnasawi, E. Yüksel, E. Gürbulak, F. Duyum, Fate
of aromatic amines through decolorization of real textile
wastewater under anoxic-aerobic membrane bioreactor,
J. Environ. Chem. Eng., 8 (2020) 104226. https://doi.org/10.1016/j.
jece.2020.104226.
- M.R. Samarghandi, A. Dargahi, A. Shabanloo, H.Z. Nasab,
Y. Vaziri, A. Ansari, Electrochemical degradation of methylene
blue dye using a graphite doped PbO2 anode: optimization of
operational parameters, degradation pathway and improving
the biodegradability of textile wastewater, Arab. J. Chem.,
13 (2020) 6847–6864.
- S. Arslan, M. Eyvaz, E. Gürbulak, E. Yüksel, A Review of State-of-the-Art Technologies in Dye-Containing Wastewater Treatment –
The Textile Industry Case, In: Textile Wastewater Treatment,
IntechOpen, 2016, pp. 1–28 , doi: 10.5772/64140. Available at:
https://www.intechopen.com/books/textile-wastewatertreatment/
a-review-of-state-of-the-art-technologies-in-dyecontaining-
wastewater-treatment-the-textile-industr.
- E.E. El-Katori, M.A. Ahmed, A.A. El-Bindary, A.M. Oraby,
Impact of CdS/SnO2 heterostructured nanoparticle as visible
light active photocatalyst for the removal methylene blue dye,
J. Photochem. Photobiol. A Chem., 392 (2020) 112403. https://
doi.org/10.1016/j.jphotochem.2020.112403.
- H.A. Kiwaan, T.M. Atwee, E.A. Azab, A.A. El-Bindary,
Photocatalytic degradation of organic dyes in the presence of
nanostructured titanium dioxide, J. Mol. Struct., 1200 (2020)
127115. https://doi.org/10.1016/j.molstruc.2019.127115.
- C. Contescu, S. Adhikari, N. Gallego, N. Evans, B. Biss,
Activated carbons derived from high-temperature pyrolysis of
lignocellulosic biomass, J. Carbon Res., 4 (2018) 1–16.
- T. Józwiak, U. Filipkowska, P. Bugajska, T. Kalkowski, The
use of coconut shells for the removal of dyes from aqueous
solutions, J. Ecol. Eng., 19 (2018) 129–135.
- A. Almasi, S.A. Mousavi, A. Hesari, H. Janjani, Walnut shell
as a natural adsorbent for the removal of Reactive Red 2 form
aqueous solution, Int. Res. J. Appl. Basic Sci., 10 (2016) 551–556.
- S. Boumchita, A. Lahrichi, Y. Benjelloun, S. Lairini, V. Nenov,
F. Zerrouq, Application of peanut shell as a low-cost adsorbent
for the removal of anionic dye from aqueous solutions, J. Mater.
Environ. Sci., 8 (2017) 2353–2364.
- S. Sawasdee, H. Jankerd, P. Watcharabundit, Adsorption of
dyestuff in household-scale dyeing onto rice husk, Energy
Procedia, 138 (2017) 1159–1164.
- S. Banerjee, G.C. Sharma, R.K. Gautam, M.C. Chattopadhyaya,
S.N. Upadhyay, Y.C. Sharma, Removal of Malachite Green, a
hazardous dye from aqueous solutions using Avena sativa (oat)
hull as a potential adsorbent, J. Mol. Liq., 213 (2016) 162–172.
- M.l. Mohamed, Anaam A. Sabri, Application of wheat husk in
color removal of textile wastewater, Eng. Technol. J., 37 (2019)
296–302.
- D.P. Dutta, S. Nath, Low cost synthesis of SiO2/C nanocomposite
from corn cobs and its adsorption of uranium (VI), chromium
(VI) and cationic dyes from wastewater, J. Mol. Liq., 269 (2018)
140–151.
- I. Anastopoulos, G.Z. Kyzas, Agricultural peels for dye
adsorption: a review of recent literature, J. Mol. Liq., 200 (2014)
381–389.
- A. Stavrinou, C.A. Aggelopoulos, C.D. Tsakiroglou, Exploring
the adsorption mechanisms of cationic and anionic dyes onto
agricultural waste peels of banana, cucumber and potato:
adsorption kinetics and equilibrium isotherms as a tool,
J. Environ. Chem. Eng., 6 (2018) 6958–6970.
- M.M.T. Namboodiri, K. Pakshirajan, Valorization of Waste
Biomass for Chitin and Chitosan Production, In: Waste
Biorefinery, 2020, Elsevier, pp. 241–266, doi: 10.1016/
B978-0-12-818228-4.00010-1.
- U. Filipkowska, T. Jόźwiak, P. Szymczyk, M. Kuczajowska-
Zadrożna, The use of active carbon immobilised on chitosan
beads for RB5 and BV10 dye removal from aqueous solutions,
Prog. Chem. Appl. Chitin Its Deriv., 22 (2017) 14–26.
- A. Murcia-Salvador, J.A. Pellicer, M.I. Rodríguez-López,
V.M. Gómez-López, E. Núñez-Delicado, J.A. Gabaldón,
Egg by-products as a tool to remove direct blue 78 dye from
wastewater: kinetic, equilibrium modeling, thermodynamics
and desorption properties, Materials (Basel), 13 (2020) 1–18.
- M. El Haddad, R. Mamouni, R. Slimani, N. Saffaj, M. Ridaoui,
S. ElAntri, S. Lazar, Adsorptive removal of reactive Yellow 84
dye from aqueous solutions onto animal bone meal, J. Mater.
Environ. Sci., 3 (2012) 1019–1026.
- S. Sharma, A. Gupta, A. Kumar, Keratin: An Introduction
BT - Keratin as a Protein Biopolymer, In: Extraction from
Waste Biomass and Applications, Springer, Cham, 2019,
doi: 10.1007/978-3-030-02901-2.
- A. Ansarullah, R. Rahim, A. Kusno, B. Baharuddin, N. Jamala,
Utilization of waste of chicken feathers and waste of cardboard
as the material of acoustic panel maker, IOP Conf. Ser. Earth
Environ. Sci., 126 (2018) 1–7.
- T. Tesfaye, B. Sithole, D. Ramjugernath, V. Chunilall, Valorisation
of chicken feathers: characterisation of chemical properties,
Waste Manage., 68 (2017) 626–635.
- A. Idris, R. Vijayaraghavan, U.A. Rana, D. Fredericks, A.F. Patti,
D.R. MacFarlane, Dissolution of feather keratin in ionic liquids,
Green Chem., 15 (2013) 525–534.
- S. Sharma, A. Gupta, S.M. Saufi, C.Y.G. Kee, P.K. Podder,
M. Subramaniam, J. Thuraisingam, Study of different treatment
methods on chicken feather biomass, IIUM Eng. J., 18 (2017)
47–55.
- J. Yao, Y. Liu, S. Yang, J. Liu, Characterization of secondary
structure transformation of stretched and slenderized wool
fibers with FTIR spectra, J. Eng. Fibers Fabr., 3 (2008) 1–10.
- G. Zhang, L. Senak, D.J. Moore, Measuring changes in
chemistry, composition, and molecular structure within hair
fibers by infrared and Raman spectroscopic imaging, J. Biomed.
Opt., 16 (2011) 1–7.
- T.K. Saha, N.C. Bhoumik, S. Karmaker, M.G. Ahmed,
H. Ichikawa, Y. Fukumori, Adsorption characteristics of
Reactive Black 5 from aqueous solution onto chitosan, Clean
Soil Air Water, 39 (2011) 984–993.
- T. Jóźwiak, U. Filipkowska, S. Brym, L. Kopeć, Use of aminated
hulls of sunflower seeds for the removal of anionic dyes from
aqueous solutions, Int. J. Environ. Sci. Technol., 17 (2020)
1211–1224.
- M. Afsharnia, H. Biglari, A. Javid, F. Zabihi, Removal of
Reactive Black 5 dye from aqueous solutions by adsorption
onto activated carbon of grape seed, Iran. J. Health Sci., 5 (2017)
48–61.
- A. Elsagh, O. Moradi, A. Fakhri, F. Najafi, R. Alizadeh,
V. Haddadi, Evaluation of the potential cationic dye removal
using adsorption by graphene and carbon nanotubes as
adsorbents surfaces, Arab. J. Chem., 10 (2017) S2862–S2869.
- N. Yeddou Mezenner, A. Hamadi, S. Kaddour, Z. Bensaadi,
A. Bensmaili, Biosorption behavior of basic red 46 and
violet 3 by dead pleurotus mutilus from single- and
multicomponent systems, J. Chem., 2013 (2013) 1–12. https://doi.org/10.1155/2013/965041.
- D.P. Dutta, A. Rathore, A. Ballal, A.K. Tyagi, Selective sorption
and subsequent photocatalytic degradation of cationic dyes by
sonochemically synthesized nano CuWO4 and Cu3Mo2O9, RSC
Adv., 5 (2015) 94866–94878.
- J.F. Osma, V. Saravia, J.L. Toca-Herrera, S.R. Couto, Sunflower
seed shells: a novel and effective low-cost adsorbent for the
removal of the diazo dye Reactive Black 5 from aqueous
solutions, J. Hazard. Mater., 147 (2007) 900–905.
- A. Fallis, Adsorption of reactive black 5 dye onto modified
wheat straw: isotherm and kinetics study, J. Chem. Inf. Model.,
53 (2013) 1689–1699.
- M.C. Ribas, M.A. Adebayo, L.D.T. Prola, E.C. Lima, R. Cataluña,
L.A. Feris, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan,
T. Calvete, Comparison of a homemade cocoa shell activated
carbon with commercial activated carbon for the removal of
reactive violet 5 dye from aqueous solutions, Chem. Eng. J.,
248 (2014) 315–326.
- A. Kowalkowska, T. Jóźwiak, Utilization of pumpkin (Cucurbita
pepo) seed husks as a low-cost sorbent for removing anionic
and cationic dyes from aqueous solutions, Desal. Wat. Treat.,
171 (2019) 397–407.
- T. Jóźwiak, U. Filipkowska, P. Zajko, Use of citrus fruit peels
(grapefruit, mandarin, orange, and lemon) as sorbents for
the removal of basic violet 10 and basic red 46 from aqueous
solutions, Desal. Wat. Treat., 163 (2019) 385–397.
- W.K. Elwira TOMCZAK, Modelowanie kinetyki sorpcji z
zastosowaniem pochodnych ułamkowych dla układu barwnik
azowy – sorbent roślinny, INŻYNIERIA I Apar. Chem.,
52 (2013) 376–377.
- P. Pengthamkeerati, T. Satapanajaru, N. Chatsatapattayakul,
P. Chairattanamanokorn, N. Sananwai, Alkaline treatment of
biomass fly ash for reactive dye removal from aqueous solution,
Desalination, 261 (2010) 34–40.
- B. Heibati, S. Rodriguez-Couto, A. Amrane, M. Rafatullah,
A. Hawari, M.A. Al-Ghouti, Uptake of Reactive Black 5
by pumice and walnut activated carbon: chemistry and
adsorption mechanisms, J. Ind. Eng. Chem., 20 (2014)
2939–2947.
- Z. Eren, F.N. Acar, Adsorption of Reactive Black 5 from an
aqueous solution: equilibrium and kinetic studies, Desalination,
194 (2006) 1–10.
- L. Laasri, M.K. Elamrani, O. Cherkaoui, Removal of two cationic
dyes from a textile effluent by filtration-adsorption on wood
sawdust, Environ. Sci. Pollut. Res., 14 (2007) 237–240.
- S.L.M. El Haddad, R. Slimani, R. Mamouni, S. Nabil,
M. Ridaoui, Adsorptive removal of a cationic dye – basic red 46
from aqueous solutions using animal bone meal, J. Eng. Stud.
Res., 18 (2012) 43–51.
- F. Deniz, S.D. Saygideger, Removal of a hazardous azo dye
(Basic Red 46) from aqueous solution by princess tree leaf,
Desalination, 268 (2011) 6–11.
- N.M. Mahmoodi, M. Arami, H. Bahrami, S. Khorramfar,
Novel biosorbent (Canola hull): surface characterization and
dye removal ability at different cationic dye concentrations,
Desalination, 264 (2010) 134–142.
- A.B. Karim, B. Mounir, M. Hachkar, M. Bakasse, A. Yaacoubi,
Removal of Basic Red 46 dye from aqueous solution by
adsorption onto Moroccan clay, J. Hazard. Mater., 168 (2009)
304–309.
- N.A.I. Azmi, N.F. Zainudin, U.F.M. Ali, Adsorption of basic Red
46 using sea mango (Cerbera odollam) based activated carbon,
AIP Conf. Proc., 1660 (2015) 1–16.
- H.N. Abdul Halim, K.L.K. Mee, Adsorption of Basic Red 46 by
granular activated carbon in a fixed- bed column, Int. Conf.
Environ. Ind. Innov., 12 (2011) 263–267.