References
- N. Xue, Q. Wang, J. Wang, J. Wang, X., Sun, Odorous
composting gas abatement and microbial community diversity
in a biotrickling filter, Int. Biodeterior. Biodegrad., 82 (2013)
73–80.
- I. Wysocka, J. Gębicki, J. Namieśnik, Technologies for
deodorization of malodorous gases, Environ. Sci. Pollut. Res.
Int., 26 (2019) 9409–9434.
- H. Bu, G. Carvalho, Z. Yuan, P. Bond, G. Jiang, Biotrickling
filter for the removal of volatile sulfur compounds from sewers:
a review, Chemosphere, 277 (2021) 130333, doi: 10.1016/j.
chemosphere.2021.130333.
- L. Liang, P. Gong. Urban and air pollution: a multi-city
study of long-term effects of urban landscape patterns on
air quality trends, Sci. Rep., 10 (2020) 18618, doi: 10.1038/
s41598-020-74524-9.
- J. Liu, X. Kang, X. Liu, P. Yue, J. Sun, C. Lu, Simultaneous
removal of bioaerosols, odors and volatile organic compounds
from a wastewater treatment plant by a full-scale integrated
reactor, Process Saf. Environ. Prot., 144 (2020) 2–14.
- P. Karageorgos, M. Latos, C. Kotsifaki, M. Lazaridis,
N. Kalogerakis, Treatment of unpleasant odors in municipal
wastewater treatment plants, Water Sci. Technol., 61 (2010)
2635–2644.
- P. Márquez, A. Benítez, A. Caballero, J.A. Siles, M.A. Martín,
Integral evaluation of granular activated carbon at four stages
of a full-scale WWTP deodorization system, Sci. Total Environ.,
754 (2021) 142237, doi: 10.1016/j.scitotenv.2020.142237.
- E. Nie, G. Zheng, C. Ma, Characterization of odorous pollution
and health risk assessment of volatile organic compound
emissions in swine facilities, Atmos. Environ., 223 (2020)
117233, doi: 10.1016/j.atmosenv.2019.117233.
- K. Barbusinski, K. Kalemba, D. Kasperczyk, K. Urbaniec,
V. Kozik, Biological methods for odor treatment – a review,
J. Cleaner Prod., 152 (2017) 223–241.
- R.H. Bogan, O.E. Albertson, J.C. Pluntz, Use of algae in removing
phosphorus from sewage, J. Saint. Eng. Div., 86 (1960) 1–20.
- W.J. Oswald, C.G. Golueke, Eutrophication trends in the United
States: a problem?, J. Water Pollut. Control Fed., 38 (1966)
964–975.
- K.R. Vieira, P.N. Pinheiro, A.B. Santos, A.J. Cichoski,
C.R. Menezes, R. Wagner, L.Q. Zepka, E. Jacob-Lopes, The
role of microalgae-based systems in the dynamics of odors
compounds in the meat processing industry, Desal. Water
Treat., 150 (2019) 282–292.
- R.M. Fisher, R.J. Barczak, I.H. Suffet, J.E. Hayes, R.M. Stuetz,
Framework for the use of odour wheels to manage odours
throughout wastewater biosolids processing, Sci. Total Environ.,
634 (2018) 214–223.
- R. Ríos-Reina, M.P. Segura-Borrego, M.L. Morales,
R.M. Callejón, Characterization of the aroma profile and key
odorants of the Spanish PDO wine vinegars, Food Chem.,
311 (2020) 126012, doi: 10.1016/j.foodchem.2019.126012.
- R. Rippka, J. Deruelles, J.B. Waterbury, M. Herdman,
R.Y. Stanier, Generic assignments strain histories and properties
of pure cultures of cyanobacteria, J. Gen. Microbiol., 111 (1979)
1–61.
- APHA, Water Environment, Standard Methods for the
Examination of Water and Wastewater, American Public Health
Association, Washington, D.C., 2005.
- E.C. Francisco, T.T. Franco, R. Wagner, E.J. Lopes, Assessment
of different carbohydrates as exogenous carbon source in
cultivation of cyanobacteria, Bioprocess Biosyst. Eng., 37 (2014)
1497–1505.
- E. Campo, V. Ferreira, A. Escudero, J. Cacho, Prediction of the
wine sensory properties related to grape variety from dynamicheadspace
gas chromatography-olfactometry data, J. Agric.
Food. Chem., 53 (2005) 5682–5690.
- V.C. Resconi, M.M. Campo, F. Montossi, V. Ferreira, C. Sañudo,
A. Escudero, Relationship between odour-active compounds
and flavour perception in meat from lambs fed different diets,
Meat Sci., 85 (2010) 700–706.
- A. Dravnieks, ed., Atlas of Odor Character Profiles, ASTM,
Philadelphia, 1985.
- T. Acree, H. Arn, Flavornet and Human Odor Space, Cornell
University, College of Agriculture and Life Sciences, New York
State Agricultural Experiment Station, USA, 2017. http://www.
flavornet.org/f_kovats.html/ (last accessed: 9 December 2019).
- H.X. Huang, G.Y. Miller, M. Ellis, T. Funk, Y.H. Zhang, G. Hollis,
A.J. Heber, Odor management in swine finishing operations:
cost effectiveness, J. Food Agric. Environ., 2 (2004) 131–136.
- K. Kaikiti, M. Stylianou, A. Agapiou, Use of biochar for the
sorption of volatile organic compounds (VOCs) emitted from
cattle manure, Environ. Sci. Pollut. Res., (2020) 1–9, doi: 10.1007/
s11356-020-09545-y.
- L. Culleré, B.F. de Simón, E. Cadahía, V. Ferreira, P.H. Orte,
J. Cacho, Characterization by gas chromatography-olfactometry
of the most odor-active compounds in extracts prepared from
acacia, chestnut, cherry, ash and oak woods, LWT Food Sci.
Technol., 53 (2013) 240–248.
- J. Schaefer, Sampling, characterization and analysis of
malodours, Agric. Environ., 3 (1977) 121–127.
- S.E. Curtis, Environmental Management in Animal Agriculture,
Iowa State University Press, Ames, 1993.
- P.J. Hobbs, T.H. Misselbrook, B.F. Pain, Emission rates of
odorous compounds from pig slurries, J. Sci. Food Agric.,
77 (1998) 341–348.
- Y. Nagata, N. Takeuchi, Measurement of odor threshold by
triangle odor bag method, Odor Measur. Rev., 118 (1990)
118–127.
- P.D. Le, A.J. Aarnink, N.W. Ogink, P.M. Becker, M.W. Verstegen,
Odour from animal production facilities: its relationship to diet,
Nutr. Res. Rev., 18 (2005) 3–30.
- R.G. Berger, Biotechnology as a source of natural volatile
flavours, Curr. Opin. Food Sci., 1 (2015) 38–43.
- M.I. Hosoglu, Aroma characterization of five microalgae species
using solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry, Food Chem., 240 (2018)
1210–1218.
- S.S. Schiffman, J.L. Bennett, J.H. Raymer, Quantification of
odors and odorants from swine operations in North Carolina,
Agric. For. Meteorol., 108 (2001) 213–240.
- J. Nuccio, P.J. Seaton, R.J. Kieber, Biological production of
formaldehyde in the marine environmental, Limnol. Oceanogr.,
40(1995) 521–527.
- E.J. Lopes, C.H.G. Scoparo, M.I. Queiroz, T.T. Franco,
Biotransformations of carbon dioxide in photobioreactors,
Energy Convers. Manage., 51 (2010) 894–900.
- A.B. Santos, A.F. Fernandes, R. Wagner, E.J. Lopes, L.Q. Zepka,
Biogeneration of volatile organic compounds produced by
Phormidium autumnale in heterotrophic bioreactor, J. Appl.
Phycol., 28 (2016) 1561–1570.
- A.V. Lindner, D. Pleissner, Utilization of phenolic compounds
by microalgae, Algal Res., 42 (2019) 101602, doi: 10.1016/j.
algal.2019.101602.
- US EPA, Initial List of Hazardous Air Pollutants with
Modifications, U.S. Environmental Protection Agency,
Washington, D.C., 2008.
- A. Dravnieks, T. Masurat, R.A. Lamm, Hedonics of odors and
odor descriptors, J. Air Pollut. Control Assoc., 34 (1984) 752–755.
- K.R. Vieira, P.N. Pinheiro, L.Q. Zepka, Volatile Organic
Compounds from Microalgae, E. Jacob-Lopes, M.M. Maroneze,
M.I. Queiroz, L.Q. Zepka, Eds., Handbook of Microalgae-Based
Processes and Products, Elsevier, 2020.
- E. Jacob-Lopes, A.B. Santos, I.A. Severo, M.C. Deprá,
M.M. Maroneze, L.Q. Zepka, Dual production of bioenergy in
heterotrophic cultures of cyanobacteria: process performance,
carbon balance, biofuel quality and sustainability metrics,
Biomass Bioenergy, 142 (2020) 105756, doi: 10.1016/j.
biombioe.2020.105756.
- I.A. Severo, P.N. Pinheiro, K.R. Vieira, L.Q. Zepka, E.J. Lopes,
Biological conversion of carbon dioxide into volatile organic
compounds, Inamuddin, A.M Asiri, E. Lichtfouse, Eds.,
Conversion of Carbon Dioxide into Hydrocarbons Vol. 2
Technology, Springer, 2020.
- J.V. Durme, K. Goiris, A. Winne, L. Cooman, K. Muylaert,
Evaluation of the volatile composition and sensory properties
of five species of microalgae, J. Agric. Food. Chem., 61 (2013)
10881–10890.
- L. Zhou, J. Chen, J. Xu, Y. Li, C. Zhou, X. Yan, Change of volatile
components in six microalgae with different growth phases,
J. Sci. Food Agric., 97 (2017) 761–769.
- H.S. Toogood, A.N. Cheallaigh, S. Tait, D.J. Mansell, A. Jervis,
A. Lygidakis, N.S. Scrutton, Enzymatic menthol production:
one-pot approach using engineered Escherichia coli, ACS Synth.
Biol., 4 (2015) 1112–1123.
- R.S. Keri, M.R. Patil, S.A Patil, S. Budagumpi, A comprehensive
review in current developments of benzothiazole-based
molecules in medicinal chemistry, Eur. J. Med. Chem., 89 (2015)
207–251.