References

  1. N. Xue, Q. Wang, J. Wang, J. Wang, X., Sun, Odorous composting gas abatement and microbial community diversity in a biotrickling filter, Int. Biodeterior. Biodegrad., 82 (2013) 73–80.
  2. I. Wysocka, J. Gębicki, J. Namieśnik, Technologies for deodorization of malodorous gases, Environ. Sci. Pollut. Res. Int., 26 (2019) 9409–9434.
  3. H. Bu, G. Carvalho, Z. Yuan, P. Bond, G. Jiang, Biotrickling filter for the removal of volatile sulfur compounds from sewers: a review, Chemosphere, 277 (2021) 130333, doi: 10.1016/j. chemosphere.2021.130333.
  4. L. Liang, P. Gong. Urban and air pollution: a multi-city study of long-term effects of urban landscape patterns on air quality trends, Sci. Rep., 10 (2020) 18618, doi: 10.1038/ s41598-020-74524-9.
  5. J. Liu, X. Kang, X. Liu, P. Yue, J. Sun, C. Lu, Simultaneous removal of bioaerosols, odors and volatile organic compounds from a wastewater treatment plant by a full-scale integrated reactor, Process Saf. Environ. Prot., 144 (2020) 2–14.
  6. P. Karageorgos, M. Latos, C. Kotsifaki, M. Lazaridis, N. Kalogerakis, Treatment of unpleasant odors in municipal wastewater treatment plants, Water Sci. Technol., 61 (2010) 2635–2644.
  7. P. Márquez, A. Benítez, A. Caballero, J.A. Siles, M.A. Martín, Integral evaluation of granular activated carbon at four stages of a full-scale WWTP deodorization system, Sci. Total Environ., 754 (2021) 142237, doi: 10.1016/j.scitotenv.2020.142237.
  8. E. Nie, G. Zheng, C. Ma, Characterization of odorous pollution and health risk assessment of volatile organic compound emissions in swine facilities, Atmos. Environ., 223 (2020) 117233, doi: 10.1016/j.atmosenv.2019.117233.
  9. K. Barbusinski, K. Kalemba, D. Kasperczyk, K. Urbaniec, V. Kozik, Biological methods for odor treatment – a review, J. Cleaner Prod., 152 (2017) 223–241.
  10. R.H. Bogan, O.E. Albertson, J.C. Pluntz, Use of algae in removing phosphorus from sewage, J. Saint. Eng. Div., 86 (1960) 1–20.
  11. W.J. Oswald, C.G. Golueke, Eutrophication trends in the United States: a problem?, J. Water Pollut. Control Fed., 38 (1966) 964–975.
  12. K.R. Vieira, P.N. Pinheiro, A.B. Santos, A.J. Cichoski, C.R. Menezes, R. Wagner, L.Q. Zepka, E. Jacob-Lopes, The role of microalgae-based systems in the dynamics of odors compounds in the meat processing industry, Desal. Water Treat., 150 (2019) 282–292.
  13. R.M. Fisher, R.J. Barczak, I.H. Suffet, J.E. Hayes, R.M. Stuetz, Framework for the use of odour wheels to manage odours throughout wastewater biosolids processing, Sci. Total Environ., 634 (2018) 214–223.
  14. R. Ríos-Reina, M.P. Segura-Borrego, M.L. Morales, R.M. Callejón, Characterization of the aroma profile and key odorants of the Spanish PDO wine vinegars, Food Chem., 311 (2020) 126012, doi: 10.1016/j.foodchem.2019.126012.
  15. R. Rippka, J. Deruelles, J.B. Waterbury, M. Herdman, R.Y. Stanier, Generic assignments strain histories and properties of pure cultures of cyanobacteria, J. Gen. Microbiol., 111 (1979) 1–61.
  16. APHA, Water Environment, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C., 2005.
  17. E.C. Francisco, T.T. Franco, R. Wagner, E.J. Lopes, Assessment of different carbohydrates as exogenous carbon source in cultivation of cyanobacteria, Bioprocess Biosyst. Eng., 37 (2014) 1497–1505.
  18. E. Campo, V. Ferreira, A. Escudero, J. Cacho, Prediction of the wine sensory properties related to grape variety from dynamicheadspace gas chromatography-olfactometry data, J. Agric. Food. Chem., 53 (2005) 5682–5690.
  19. V.C. Resconi, M.M. Campo, F. Montossi, V. Ferreira, C. Sañudo, A. Escudero, Relationship between odour-active compounds and flavour perception in meat from lambs fed different diets, Meat Sci., 85 (2010) 700–706.
  20. A. Dravnieks, ed., Atlas of Odor Character Profiles, ASTM, Philadelphia, 1985.
  21. T. Acree, H. Arn, Flavornet and Human Odor Space, Cornell University, College of Agriculture and Life Sciences, New York State Agricultural Experiment Station, USA, 2017. http://www. flavornet.org/f_kovats.html/ (last accessed: 9 December 2019).
  22. H.X. Huang, G.Y. Miller, M. Ellis, T. Funk, Y.H. Zhang, G. Hollis, A.J. Heber, Odor management in swine finishing operations: cost effectiveness, J. Food Agric. Environ., 2 (2004) 131–136.
  23. K. Kaikiti, M. Stylianou, A. Agapiou, Use of biochar for the sorption of volatile organic compounds (VOCs) emitted from cattle manure, Environ. Sci. Pollut. Res., (2020) 1–9, doi: 10.1007/ s11356-020-09545-y.
  24. L. Culleré, B.F. de Simón, E. Cadahía, V. Ferreira, P.H. Orte, J. Cacho, Characterization by gas chromatography-olfactometry of the most odor-active compounds in extracts prepared from acacia, chestnut, cherry, ash and oak woods, LWT Food Sci. Technol., 53 (2013) 240–248.
  25. J. Schaefer, Sampling, characterization and analysis of malodours, Agric. Environ., 3 (1977) 121–127.
  26. S.E. Curtis, Environmental Management in Animal Agriculture, Iowa State University Press, Ames, 1993.
  27. P.J. Hobbs, T.H. Misselbrook, B.F. Pain, Emission rates of odorous compounds from pig slurries, J. Sci. Food Agric., 77 (1998) 341–348.
  28. Y. Nagata, N. Takeuchi, Measurement of odor threshold by triangle odor bag method, Odor Measur. Rev., 118 (1990) 118–127.
  29. P.D. Le, A.J. Aarnink, N.W. Ogink, P.M. Becker, M.W. Verstegen, Odour from animal production facilities: its relationship to diet, Nutr. Res. Rev., 18 (2005) 3–30.
  30. R.G. Berger, Biotechnology as a source of natural volatile flavours, Curr. Opin. Food Sci., 1 (2015) 38–43.
  31. M.I. Hosoglu, Aroma characterization of five microalgae species using solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry, Food Chem., 240 (2018) 1210–1218.
  32. S.S. Schiffman, J.L. Bennett, J.H. Raymer, Quantification of odors and odorants from swine operations in North Carolina, Agric. For. Meteorol., 108 (2001) 213–240.
  33. J. Nuccio, P.J. Seaton, R.J. Kieber, Biological production of formaldehyde in the marine environmental, Limnol. Oceanogr., 40(1995) 521–527.
  34. E.J. Lopes, C.H.G. Scoparo, M.I. Queiroz, T.T. Franco, Biotransformations of carbon dioxide in photobioreactors, Energy Convers. Manage., 51 (2010) 894–900.
  35. A.B. Santos, A.F. Fernandes, R. Wagner, E.J. Lopes, L.Q. Zepka, Biogeneration of volatile organic compounds produced by Phormidium autumnale in heterotrophic bioreactor, J. Appl. Phycol., 28 (2016) 1561–1570.
  36. A.V. Lindner, D. Pleissner, Utilization of phenolic compounds by microalgae, Algal Res., 42 (2019) 101602, doi: 10.1016/j. algal.2019.101602.
  37. US EPA, Initial List of Hazardous Air Pollutants with Modifications, U.S. Environmental Protection Agency, Washington, D.C., 2008.
  38. A. Dravnieks, T. Masurat, R.A. Lamm, Hedonics of odors and odor descriptors, J. Air Pollut. Control Assoc., 34 (1984) 752–755.
  39. K.R. Vieira, P.N. Pinheiro, L.Q. Zepka, Volatile Organic Compounds from Microalgae, E. Jacob-Lopes, M.M. Maroneze, M.I. Queiroz, L.Q. Zepka, Eds., Handbook of Microalgae-Based Processes and Products, Elsevier, 2020.
  40. E. Jacob-Lopes, A.B. Santos, I.A. Severo, M.C. Deprá, M.M. Maroneze, L.Q. Zepka, Dual production of bioenergy in heterotrophic cultures of cyanobacteria: process performance, carbon balance, biofuel quality and sustainability metrics, Biomass Bioenergy, 142 (2020) 105756, doi: 10.1016/j. biombioe.2020.105756.
  41. I.A. Severo, P.N. Pinheiro, K.R. Vieira, L.Q. Zepka, E.J. Lopes, Biological conversion of carbon dioxide into volatile organic compounds, Inamuddin, A.M Asiri, E. Lichtfouse, Eds., Conversion of Carbon Dioxide into Hydrocarbons Vol. 2 Technology, Springer, 2020.
  42. J.V. Durme, K. Goiris, A. Winne, L. Cooman, K. Muylaert, Evaluation of the volatile composition and sensory properties of five species of microalgae, J. Agric. Food. Chem., 61 (2013) 10881–10890.
  43. L. Zhou, J. Chen, J. Xu, Y. Li, C. Zhou, X. Yan, Change of volatile components in six microalgae with different growth phases, J. Sci. Food Agric., 97 (2017) 761–769.
  44. H.S. Toogood, A.N. Cheallaigh, S. Tait, D.J. Mansell, A. Jervis, A. Lygidakis, N.S. Scrutton, Enzymatic menthol production: one-pot approach using engineered Escherichia coli, ACS Synth. Biol., 4 (2015) 1112–1123.
  45. R.S. Keri, M.R. Patil, S.A Patil, S. Budagumpi, A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry, Eur. J. Med. Chem., 89 (2015) 207–251.