References

  1. K. Grefen, J. Helber, J. Heinz, F. Peters, Heavy-metals in the environment, Staub, Reinhaltung Luft, 45 (1985) 444–451.
  2. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, A. Luch, Heavy Metal Toxicity and the Environment, A. Luch, Ed., Molecular, Clinical and Environmental Toxicology, Vol. 3, Environmental Toxicology, Springer Science & Business Media, Berlin, 2012.
  3. S. Wang, X. Shi, Molecular mechanisms of metal toxicity and carcinogenesis, Mol. Cell. Biochem., 222 (2001) 3–9.
  4. G. Wulff, The role of binding-site interactions in the molecular imprinting of polymers, Trends Biotechnol., 11 (1993) 85–87.
  5. B.T.S. Bui, K. Haupt, Molecularly imprinted polymers: synthetic receptors in bioanalysis, Anal. Bioanal. Chem., 398 (2010) 2481–2492.
  6. K. Laatikainen, C. Branger, B. Coulomb, V. Lenoble, T. Sainio, In situ complexation versus complex isolation in synthesis of ion-imprinted polymers, React. Funct. Polym., 122 (2018) 1–8.
  7. F. Canfarotta, R. Rapini, S. Piletsky, Recent advances in electrochemical sensors based on chiral and nano-sized imprinted polymers, Curr. Opin. Electrochem., 7 (2018) 146–152.
  8. H.-T. Fan, X.-T. Sun, Z.-G. Zhang, W.-X. Li, Selective removal of lead(II) from aqueous solution by an ion-imprinted silica sorbent functionalized with chelating N-donor atoms, J. Chem. Eng. Data, 59 (2014) 2106–2114.
  9. J. Fu, L. Chen, J. Li, Z. Zhang, Current status and challenges of ion imprinting, J. Mater. Chem. A, 3 (2015) 13598–13627.
  10. F. Qiao, H. Sun, H. Yan, K.H. Row, Molecularly imprinted polymers for solid phase extraction, Chromatographia, 64 (2006) 625–634.
  11. M.J. Whitcombe, M.E. Rodriguez, P. Villar, E.N. Vulfson, A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol, J. Am. Chem. Soc., 117 (1995) 7105–7111.
  12. H. Li, H. He, J. Huang, C.Z. Wang, X. Gu, Y. Gao, H. Zhang, S. Du, L. Chen, C.S. Yuan, A novel molecularly imprinted method with computational simulation for the affinity isolation and knockout of baicalein from Scutellaria baicalensis, Biomed. Chromatogr., 30 (2016) 117–125.
  13. H.-T. Fan, X.-T. Sun, W.-X. Li, Sol–gel derived ion-imprinted silica-supported organic–inorganic hybrid sorbent for selective removal of lead(II) from aqueous solution, J. Sol-Gel Sci. Technol., 72 (2014) 144–155.
  14. X. Chang, N. Jiang, H. Zheng, Q. He, Z. Hu, Y. Zhai, Y. Cui, Solid-phase extraction of iron(III) with an ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique, Talanta, 71 (2007) 38–43.
  15. P.A. Cormack, A.Z. Elorza, Molecularly imprinted polymers: synthesis and characterisation, J. Chromatogr. B, 804 (2004) 173–182.
  16. K. Karim, F. Breton, R. Rouillon, E.V. Piletska, A. Guerreiro, I. Chianella, S.A. Piletsky, How to find effective functional monomers for effective molecularly imprinted polymers?, Adv. Drug Delivery Rev., 57 (2005) 1795–1808.
  17. L. Chen, S. Xu, J. Li, Recent advances in molecular imprinting technology: current status, challenges and highlighted applications, Chem. Soc. Rev., 40 (2011) 2922–2942.
  18. H.-T. Fan, W. Sun, B. Jiang, Q.-J. Wang, D.-W. Li, C.-C. Huang, K.-J. Wang, Z.-G. Zhang, W.-X. Li, Adsorption of antimony(III) from aqueous solution by mercapto-functionalized silicasupported organic–inorganic hybrid sorbent: mechanism insights, Chem. Eng. J., 286 (2016) 128–138.
  19. C. Branger, W. Meouche, A. Margaillan, Recent advances on ionimprinted polymers, React. Funct. Polym., 73 (2013) 859–875.
  20. S. Sosnowski, M. Gadzinowski, S. Slomkowski, Poly(L,Llactide) microspheres by ring-opening polymerization, Macromolecules, 29 (1996) 4556–4564.
  21. M. Antonietti, W. Bremser, M. Schmidt, Microgels: model polymers for the crosslinked state, Macromolecules, 23 (1990) 3796–3805.
  22. L. Ye, P.A. Cormack, K. Mosbach, Molecularly imprinted monodisperse microspheres for competitive radioassay, Anal. Commun., 36 (1999) 35–38.
  23. R. Crichton, R.R. Crichton, J.R. Boelaert, Inorganic Biochemistry of Iron Metabolism: From Molecular Mechanisms to Clinical Consequences, John Wiley & Sons, New Jersey, 2001.
  24. D.H. Boldt, New perspectives on iron: an introduction, Am. J. Med. Sci., 318 (1999) 207–212.
  25. E.R. Christensen, J.T. Delwiche, Removal of heavy metals from electroplating rinsewaters by precipitation, flocculation and ultrafiltration, Water Res., 16 (1982) 729–737.
  26. P.W. Boyd, A.J. Watson, C.S. Law, E.R. Abraham, T. Trull, R. Murdoch, D.C. Bakker, A.R. Bowie, K. Buesseler, H. Chang, A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization, Nature, 407 (2000) 695–702.
  27. W. Stumm, G.F. Lee, The chemistry of aqueous iron, Schweiz. Z. Hydrol., 22 (1960) 295, doi: 10.1007/BF02503278.
  28. F. An, B. Gao, X. Huang, Y. Zhang, Y. Li, Y. Xu, Z. Chen, J. Gao, Removal of Fe(II) from Ce(III) and Pr(III) rare earth solution using surface imprinted polymer, Desal. Water Treat., 51 (2013) 5566–5573.
  29. H.-T. Fan, T. Sun, Selective removal of iron from aqueous solution using ion-imprinted thiocyanato-functionalized silica gel sorbents, Korean J. Chem. Eng., 29 (2012) 798–803.
  30. H.M. Kwaambwa, A.R. Rennie, Interactions of surfactants with a water treatment protein from Moringa oleifera seeds in solution studied by zeta‐potential and light scattering measurements, Biopolymers, 97 (2012) 209–218.
  31. A. Elaissari, Colloidal Polymers: Synthesis and Characterization, CRC Press, Florida, 2003.
  32. E. Agustina, J. Goak, S. Lee, Y. Seo, J.-Y. Park, N. Lee, Simple and precise quantification of iron catalyst content in carbon nanotubes using UV/Visible spectroscopy, ChemistryOpen, 4 (2015) 613–619.
  33. M. Mitreva, I. Dakova, I. Karadjova, Iron(II) ion-imprinted polymer for Fe(II)/Fe(III) speciation in wine, Microchem. J., 132 (2017) 238–244.
  34. T. ul Haq Zia, A.H. Mehmood, B. Ara, K. Gul, Investigation of the equilibrium, thermodynamic and kinetic parameters of study of the Allura red dye efficient removal from aqueous solution by magnetic α-Fe2O3 nanoparticles and its nanocomposite with graphite powder (α-Fe2O3/G-p), Desal. Water Treat., 139 (2019) 174–190.
  35. S.M. El-Bahy, Z.M. El-Bahy, Synthesis and characterization of polyamidoxime chelating resin for adsorption of Cu(II), Mn(II) and Ni(II) by batch and column study, J. Environ. Chem. Eng., 4 (2016) 276–286.
  36. G. Liu, X. Yang, Y. Wang, Silica/poly(N,N'-methylenebisacrylamide) composite materials by encapsulation based on a hydrogen-bonding interaction, Polymer, 48 (2007) 4385–4392.
  37. Z. Jing, A. Xu, Y.-Q. Liang, Z. Zhang, C. Yu, P. Hong, Y. Li, Biodegradable poly(acrylic acid-co-acrylamide)/poly(vinyl alcohol) double network hydrogels with tunable mechanics and high self-healing performance, Polymers (Basel), 11 (2019) 952, doi: 10.3390/polym11060952.
  38. K.K. Bania, R.C. Deka, Experimental and theoretical evidence for encapsulation and tethering of 1,10-phenanthroline complexes of Fe, Cu, and Zn in zeolite–Y, J. Phys. Chem. C, 116 (2012) 14295–14310.
  39. R.G. Charles, H. Freiser, R. Friedel, L.E. Hilliard, W.D. Johnston, Infra-red absorption spectra of metal chelates derived from 8-hydroxyquinoline, 2-methyl-8-hydroxyquinoline, and 4-methyl-8- hydroxyquinoline, Spectrochim. Acta, 8 (1956) 1–8.
  40. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
  41. B.C. Lippens, J.H. de Boer, Studies on pore systems in catalysts: V. The t method, J. Catal., 4 (1965) 319–323.
  42. A. Galarneau, F. Villemot, J. Rodriguez, F. Fajula, B. Coasne, Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials, Langmuir, 30 (2014) 13266–13274.
  43. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73 (1951) 373–380.
  44. A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 1980.
  45. H.-J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces, John Wiley & Sons, New Jersey, 2013.
  46. M. Wiśniewska, A. Nosal-Wiercińska, I. Ostolska, D. Sternik, P. Nowicki, R. Pietrzak, A. Bazan-Wozniak, O. Goncharuk, Nanostructure of poly(acrylic acid) adsorption layer on the surface of activated carbon obtained from residue after supercritical extraction of hops, Nanoscale Res. Lett., 12 (2017) 2, doi: 10.1186/s11671-016-1772-3.
  47. M. Wiśniewska, T. Urban, E. Grządka, V.I. Zarko, V.M. Gun’ko, Comparison of adsorption affinity of polyacrylic acid for surfaces of mixed silica–alumina, Colloid Polym. Sci., 292 (2014) 699–705.
  48. M. Mackiewicz, Z. Stojek, M. Karbarz, Synthesis of cross-linked poly(acrylic acid) nanogels in an aqueous environment using precipitation polymerization: unusually high volume change, R. Soc. Open Sci., 6 (2019) 190981, doi: 10.1098/rsos.190981.
  49. T. Lee, I. Kolthoff, D. Leussing, Reaction of ferrous and ferric iron with 1,10-phenanthroline. I. Dissociation constants of ferrous and ferric phenanthroline, J. Am. Chem. Soc., 70 (1948) 2348–2352.
  50. E.F. Chaúque, L.N. Dlamini, A.A. Adelodun, C.J. Greyling, J.C. Ngila, Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents, Appl. Surf. Sci., 369 (2016) 19–28.
  51. B. Ara, M. Muhammad, Rani, T.U.H. Zia, K. Gul, Selective removal of copper and cobalt from aqueous environment using new Cu(II) and Co(II) imprinted polymer and their determination by flame atomic absorption spectrophotometry, Desal. Water Treat., 191 (2020) 173–184.
  52. T. Wang, J. Wu, Y. Zhang, J. Liu, Z. Sui, H. Zhang, W.-Y. Chen, P. Norris, W.-P. Pan, Increasing the chlorine active sites in the micropores of biochar for improved mercury adsorption, Fuel, 229 (2018) 60–67.
  53. Y. Liu, Z. Liu, J. Gao, J. Dai, J. Han, Y. Wang, J. Xie, Y. Yan, Selective adsorption behavior of Pb(II) by mesoporous silica SBA-15-supported Pb(II)-imprinted polymer based on surface molecularly imprinting technique, J. Hazard. Mater., 186 (2011) 197–205.
  54. T.-H. Liou, Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation, Chem. Eng. J., 158 (2010) 129–142.
  55. S. Karaca, A. Gürses, M. Ejder, M. Açıkyıldız, Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite, J. Hazard. Mater., 128 (2006) 273–279.
  56. G. Belton, Langmuir adsorption, the Gibbs adsorption isotherm, and interracial kinetics in liquid metal systems, Metall. Trans. B, 7 (1976) 35–42.
  57. H. Freundlich, Über die adsorption in lösungen, Z. Phys. Chem., 57 (1907) 385–470.
  58. J. Appel, Freundlich’s adsorption isotherm, Surf. Sci., 39 (1973) 237–244.
  59. F.A. Mustafai, A. Balouch, M.I. Bhanger, A. Abdullah, K. Rajar, P. Panah, B. Ahmed, T. Shah, A. Kumar, Synthesis of molecularly imprinted polymer for the selective removal of mercury, Eur. J. Anal. Chem., 13 (2018) 5, doi: 10.29333/ejac/97222.
  60. G. Crini, P.-M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polym. Sci., 33 (2008) 399–447.
  61. M. Ismail, C.N. Weng, H.A. Rahman, N.A. Zakaria, Freundlich isotherm equilibrium equastions in determining effectiveness a low cost absorbent to heavy metal removal in wastewater (leachate) at Teluk Kitang Landfill, Pengkalan Chepa, Kelantan, Malaysia, J. Geogr. Earth Sci., 1 (2013) 1–8.
  62. F. Haghseresht, G. Lu, Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents, Energy Fuel, 12 (1998) 1100–1107.
  63. W. Zhang, Q. Li, J. Cong, B. Wei, S. Wang, Mechanism analysis of selective adsorption and specific recognition by molecularly imprinted polymers of Ginsenoside Re, Polymers, 10 (2018) 216, doi: 10.3390/polym10020216.
  64. N.D. Hutson, R.T. Yang, Theoretical basis for the Dubinin- Radushkevitch (DR) adsorption isotherm equation, Adsorption, 3 (1997) 189–195.
  65. K. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  66. E.R. Monazam, L.J. Shadle, D.C. Miller, H.W. Pennline, D.J. Fauth, J.S. Hoffman, M.L. Gray, Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica, AIChE J., 59 (2013) 923–935.
  67. A. Ebadi, J.S.S. Mohammadzadeh, A. Khudiev, What is the correct form of BET isotherm for modeling liquid phase adsorption?, Adsorption, 15 (2009) 65–73.
  68. W.J. Weber, Physicochemical Processes for Water Quality Control, Wiley Interscience, New Jersey, 1972.
  69. Ö. Saatçılar, N. Şatıroğlu, R. Say, S. Bektas, A. Denizli, Binding behavior of Fe3+ ions on ion‐imprinted polymeric beads for analytical applications, J. Appl. Polym. Sci., 101 (2006) 3520–3528.
  70. X. Cai, J. Li, Z. Zhang, F. Yang, R. Dong, L. Chen, Novel Pb2+ ionimprinted polymers based on ionic interaction via synergy of dual functional monomers for selective solid-phase extraction of Pb2+ in water samples, ACS Appl. Mater. Interface, 6 (2014) 305–313.
  71. G.S. Owens, G.E. Southard, K.A.V. Houten, G.M. Murray, Molecularly imprinted ion-exchange resin for Fe3+, Sep. Sci. Technol., 40 (2005) 2205–2211.
  72. S.G. Ozcan, N. Satiroglu, M. Soylak, Column solid phase extraction of iron(III), copper(II), manganese(II) and lead(II) ions food and water samples on multi-walled carbon nanotubes, Food Chem. Toxicol., 48 (2010) 2401–2406.
  73. G.-j. Zhu, H.-y. Tang, P.-h. Qing, H.-l. Zhang, X.-c. Cheng, Z.-h. Cai, H.-b. Xu, Y. Zhang, A monophosphonic groupfunctionalized ion-imprinted polymer for a removal of Fe3+ from highly concentrated basic chromium sulfate solution, Korean J. Chem. Eng., 37 (2020) 911–920.
  74. I.M. Ahmed, M.S. Gasser, Adsorption study of anionic reactive dye from aqueous solution to Mg–Fe–CO3 layered double hydroxide (LDH), Appl. Surf. Sci., 259 (2012) 650–656.
  75. A.R. Kul, N. Caliskan, Equilibrium and kinetic studies of the adsorption of Zn(II) ions onto natural and activated kaolinites, Adsorpt. Sci. Technol., 27 (2009) 85–105.
  76. F. Zhu, L. Li, J. Xing, Selective adsorption behavior of Cd(II) ion-imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: adsorption performance and mechanism, J. Hazard. Mater., 321 (2017) 103–110.
  77. A.L.P. de Araujo, M.L. Gimenes, M.A.S.D. de Barros, M.G.C. da Silva, A kinetic and equilibrium study of zinc removal by Brazilian bentonite clay, Mater. Res., 16 (2013) 128–136.
  78. X. Ao, H. Guan, Preparation of Pb(II) ion-imprinted polymers and their application in selective removal from wastewater, Adsorpt. Sci. Technol., 36 (2018) 774–787.
  79. A.E. Regazzoni, Adsorption kinetics at solid/aqueous solution interfaces: on the boundaries of the pseudo-second-order rate equation, Colloids Surf. A., 585 (2020) 124093, doi: 10.1016/j. colsurfa.2019.124093.
  80. B. Ara, M. Muhammad, M. Salman, R. Ahmad, N. Islam, Preparation of microspheric Fe(III)-ion-imprinted polymer for selective solid phase extraction, Appl. Water Sci., 8 (2018) 41, doi: 10.1007/s13201-018-0680-3.
  81. J. Long, X. Luo, X. Yin, X. Wu, An ion-imprinted polymer based on the novel functional monomer for selective removal of Ni(II) from aqueous solution, J. Environ. Chem. Eng., 4 (2016) 4776–4785.
  82. B. Ara, M. Muhammad, H. Amin, Noori, R. Begum, S. Jabeen, S. Gul, T. ul Haq Zia, H. Nasir, Synthesis of ion-imprinted polymers by copolymerization of Zn(II) and Al(III)8-hydroxy quinolone complexes with divinylbenzene and methacryclic acid, Polym. Plast. Technol., 55 (2016) 1460–1473.
  83. Y.-S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res., 34 (2000) 735–742.
  84. Y.-S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  85. Ö. Gerçel, A. Özcan, A.S. Özcan, H.F. Gercel, Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions, Appl. Surf. Sci., 253 (2007) 4843–4852.
  86. F.-C. Wu, R.-L. Tseng, R.-S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 153 (2009) 1–8.
  87. N. Randhawa, N. Das, R. Jana, Adsorptive remediation of Cu(II) and Cd(II) contaminated water using manganese nodule leaching residue, Desal. Water Treat., 52 (2014) 4197–4211.
  88. Z. Aly, A. Graulet, N. Scales, T. Hanley, Removal of aluminium from aqueous solutions using PAN-based adsorbents: characterisation, kinetics, equilibrium and thermodynamic studies, Environ. Sci. Pollut. Res., 21 (2014) 3972–3986.
  89. M. Doğan, H. Abak, M. Alkan, Adsorption of methylene blue onto hazelnut shell: kinetics, mechanism and activation parameters, J. Hazard. Mater., 164 (2009) 172–181.
  90. L. Wang, J. Li, J. Wang, X. Guo, X. Wang, J. Choo, L. Chen, Green multi-functional monomer based ion-imprinted polymers for selective removal of copper ions from aqueous solution, J. Colloid Interface Sci., 541 (2019) 376–386.