References
- T. Petzoldt, D. Uhlmann, Nitrogen emissions into freshwater
ecosystems: is there a need for nitrate elimination in all
wastewater treatment plants?, Acta Hydroch. Hydrob.,
34 (2006) 305–324.
- M. Callisto, J. Molozzi, J. Barbosa, Eutrophication of Lakes,
Eutrophication Causes, Consequences Control, Vol. 2, Springer
Science & Business Media, Dordrecht, 2014, pp. 1–262.
- K. Rankinen, H. Keinänen, J.E. Cano Bernal, Influence of climate
and land use changes on nutrient fluxes from Finnish rivers to
the Baltic Sea, Agric. Ecosyst. Environ., 216 (2016) 100–115.
- F. Hernandez-Sancho, M. Molinos-Senante, R. Sala-Garrido,
Cost modelling for wastewater treatment processes,
Desalination, 268 (2011) 1–5.
- R.A. Vollenweider, J.J. Kerekes, Eutrophication of Waters:
Monitoring, Assessment and Control, OECD – Organization
for Economic Co-Operation and Development, Paris (France),
(ISBN: 92-64-22298-7), 1982.
- E. Neverova-Dziopak, O. Dan, Classification of the State of
Marine Coastal Waters in Ukraine in the Example of the Sea
of Azov in the Mariupol Region, Ochr. Środowiska., 40 (2018)
29–34.
- J. Nakajima, Y. Murata, M. Sakamoto, Comparison of several
methods for BAP measurement, Water Sci. Technol., 53 (2006)
329–336.
- European Commission, Council Directive 91/271/EEC of 21
May 1991 Concerning Urban Wastewater Treatment, Council of
the European Union, Brussels, 1991.
- European Commission, Water Framework Directive 2000/60/EC
of the European Parliament and of the Council of 23 October
2000 Establishing a Framework for Community Action in the
Field of Water Policy, Council of the European Union, Brussels,
2000.
- HELCOM, State of the Baltic Sea – Second HELCOM Holistic
Assessment 2011–2016, 2017.
- I. Deviatkin, L. Lyu, S.Q. Chen, J. Havukainen, F. Wang,
M. Horttanainen, M. Mänttäri, Technical implications and
global warming potential of recovering nitrogen released
during continuous thermal drying of sewage sludge, Waste
Manage., 90 (2019) 132–140.
- M. Smol, The importance of sustainable phosphorus
management in the circular economy (CE) model: the
Polish case study, J. Mater. Cycles Waste Manage., 21 (2019)
227–238.
- C. Kabbe, Chapter 3 – Circular Economy: Bridging the Gap
Between Phosphorus Recovery and Recycling, H. Ohtake,
S. Tsuneda, Eds., Phosphorus Recovery and Recycling, Springer
Singapore, Singapore, 2019, pp. 45–57.
- H. Kroiss, H. Rechberger, L. Egle, Phosphorus in Water Quality
and Waste Management, S. Kumar, Eds., Integrated Waste
Management – Volume II, IntechOpen Limited, London, 2011,
doi: 10.5772/18482.
- European Sustainable Phosphorus Platform, ESPP Scope
Newsletter n°129, European Sustainable Phosphorus Platform,
Brussels, 2019.
- H. Herzel, O. Krüger, L. Hermann, C. Adam, Sewage sludge
ash — a promising secondary phosphorus source for fertilizer
production, Sci. Total Environ., 542 (2016) 1136–1143.
- M. Smol, M. Preisner, A. Bianchini, J. Rossi, L. Hermann,
T. Schaaf, J. Kruopienė, K. Pamakštys, M. Klavins, R. Ozola-
Davidane, D. Kalnina, E. Strade, V. Voronova, K. Pachel,
X.S. Yang, B.-M. Steenari, M. Svanström, Strategies for
sustainable and circular management of phosphorus in the
Baltic Sea region: the holistic approach of the InPhos project,
Sustainability, 12 (2020) 2567, doi: 10.3390/su12062567.
- H. Tulsidas, S. Gabriel, K. Kiegiel, N. Haneklaus, Uranium
resources in EU phosphate rock imports, Resour. Policy,
61 (2019) 151–156.
- J. Rogowska, M. Cieszynska-Semenowicz, W. Ratajczyk,
L. Wolska, Micropollutants in treated wastewater, Ambio,
49 (2020) 487–503.
- L. Egle, H. Rechberger, J. Krampe, M. Zessner, Phosphorus
recovery from municipal wastewater: an integrated
comparative technological, environmental and economic
assessment of P recovery technologies, Sci. Total Environ.,
571 (2016) 522–542.
- C. Vogel, R. Sekine, D. Steckenmesser, E. Lombi, D. Steffens,
C. Adam, Phosphorus availability of sewage sludge-based
fertilizers determined by the diffusive gradients in thin films
(DGT) technique, J. Plant Nutr. Soil Sci., 180 (2017) 594–601.
- S. Suthar, K. Kumar, P.K. Mutiyar, Nutrient recovery from
compostable fractions of municipal solid wastes using
vermitechnology, J. Mater. Cycles Waste Manage., 17 (2015)
174–184.
- K. Rosiek, Directions and challenges in the management
of municipal sewage sludge in Poland in the context of the
circular economy, Sustainability, 12 (2020) 3686, doi: 10.3390/
su12093686.
- M. Smol, C. Adam, S. Anton Kugler, Inventory of Polish
municipal sewage sludge ash (SSA) – mass flows, chemical
composition, and phosphorus recovery potential, Waste
Manage., 116 (2020) 31–39.
- R.H.E.M. Koppelaar, H.P. Weikard, Assessing phosphate rock
depletion and phosphorus recycling options, Global Environ.
Change, 23 (2013) 1454–1466.
- M. Smol, C. Adam, M. Preisner, Circular economy model
framework in the European water and wastewater sector,
J. Mater. Cycles Waste Manage., 22 (2020) 682–697.
- P. Ghisellini, C. Cialani, S. Ulgiati, A review on circular
economy: the expected transition to a balanced interplay
of environmental and economic systems, J. Cleaner Prod.,
114 (2016) 11–32.
- B. Li, M.T. Brett, The influence of dissolved phosphorus
molecular form on recalcitrance and bioavailability, Environ.
Pollut., 182 (2013) 37–44.
- M. Scholz, Chapter 15 – Activated Sludge Processes, M. Scholz,
Ed., Wetlands for Water Pollution Control, 2nd ed., Elsevier,
Amsterdam, 2016, pp. 91–105.
- M.C.M. Van Loosdrecht, C.M. Lopez-Vazquez, S.C.F. Meijer,
C.M. Hooijmans, D. Brdjanovic, Twenty-five years of ASM1:
past, present and future of wastewater treatment modelling,
J. Hydroinf., 17 (2015) 697–718.
- R. Bashar, K. Gungor, K.G. Karthikeyan, P. Barak, Cost
effectiveness of phosphorus removal processes in municipal
wastewater treatment, Chemosphere, 197 (2018) 280–290.
- D. Brdjanovic, M.C.M. van Loosdrecht, P. Versteeg,
C.M. Hooijmans, G.J. Alaerts, J.J. Heijnen, Modeling COD, N
and P removal in a full-scale wwtp Haarlem Waarderpolder,
Water Res., 34 (2000) 846–858.
- O. Ashrafi, L. Yerushalmi, F. Haghighat, Wastewater treatment
in the pulp-and-paper industry: a review of treatment processes
and the associated greenhouse gas emission, J. Environ.
Manage., 158 (2015) 146–157.
- K.C. van Dijk, J.P. Lesschen, O. Oenema, Phosphorus flows
and balances of the European Union Member States, Sci. Total
Environ., 542 (2016) 1078–1093.
- N. Arumugam, S. Chelliapan, H. Kamyab, S. Thirugnana,
N. Othman, N.S. Nasri, Treatment of wastewater using
seaweed: a review, Int. J. Environ. Res. Public Health, 15 (2018)
1–17, doi: 10.3390/ijerph15122851.
- B. Piotrowska, D. Słyś, S. Kordana-Obuch, K. Pochwat, Critical
analysis of the current state of knowledge in the field of waste
heat recovery in sewage systems, Resources, 9 (2020) 72,
doi: 10.3390/resources9060072.
- M. Henze, Mark van Loosdrecht, George Ekama, D. Brdjanovic,
Biological Wastewater Treatment, IWA Publishing, London,
2008.
- J. Ferrer, A. Seco, J. Serralta, J. Ribes, J. Manga, E. Asensi,
J.J. Morenilla, F. Llavador, DESASS: a software tool for
designing, simulating and optimising WWTPs, Environ.
Modell. Software, 23 (2008) 19–26.
- M. Cramer, T. Koegst, J. Traenckner, Multi-criterial evaluation
of P-removal optimization in rural wastewater treatment
plants for a sub-catchment of the Baltic Sea, Ambio, 47 (2018)
93–102.
- Z. Kowalewski, Differences in the ASM model caused by data
structure, E3S Web Conf., 45 (2018) 3–9.
- M. Henze, W. Gujer, T. Mino, M. van Loosedrecht, Activated
Sludge Models ASM1, ASM2, ASM2d and ASM3, IWA
Publishing, London, 2006.
- A. Elawwad, M. Matta, M. Abo-Zaid, H. Abdel-Halim, Plantwide
modeling and optimization of a large-scale WWTP using
BioWin’s ASDM model, J. Water Process Eng., 31 (2019) 100819,
doi: 10.1016/j.jwpe.2019.100819.
- R. Vitanza, I. Colussi, A. Cortesi, V. Gallo, Implementing a
respirometry-based model into BioWin software to simulate
wastewater treatment plant operations, J. Water Process Eng.,
9 (2016) 267–275.
- M. Preisner, E. Neverova-Dziopak, Z. Kowalewski, Mitigation
of eutrophication caused by wastewater discharge: a simulationbased
approach, Ambio, 50 (2021) 413–424.
- German Association for Water Wastewater and Waste, German
ATV Standards: Design and Construction of Wastewater
Treatment Systems. Standard ATV-A 106E, German Association
for Water, Wastewater and Waste, Berlin, 1995.
- M. Preisner, E. Neverova-Dziopak, Z. Kowalewski, Analysis of
eutrophication potential of municipal wastewater, Water Sci.
Technol., 81 (2020) 1994–2003.
- C. Warwick, A. Guerreiro, A. Soares, Sensing and analysis
of soluble phosphates in environmental samples: a review,
Biosens. Bioelectron., 41 (2013) 1–11.
- M.T. Brett, B. Li, The Bioavailable Phosphorus (BAP) Fraction
in Effluent from Advanced Secondary and Tertiary Treatment,
IWA Publishing, London, 2015.
- L. Przywara, Warunki i możliwości usuwania fosforanów
i fosforu ogólnego ze ścieków przemysłowych, Cracow
University of Technology (Ph.D. Thesis), Bielsko-Biala, 2006.
- W. Adamczyk, A. Jachimowski, Impact of biogenic components
on quality and eutrophication of flowing surface waters
constituting the source of drinking water for the city of Kraków,
Pol. Food Sci. Technol. Qual., 6 (2013) 175–190.
- R.D. Li, J. Yin, W.Y. Wang, Y.L. Li, Z.H. Zhang, Transformation
of phosphorus during drying and roasting of sewage sludge,
Waste Manage., 34 (2014) 1211–1216.
- P.M. Melia, A.B. Cundy, S.P. Sohi, P.S. Hooda, R. Busquets,
Trends in the recovery of phosphorus in bioavailable forms
from wastewater, Chemosphere, 186 (2017) 381–395.
- S. Shaddel, H. Bakhtiary-Davijany, C. Kabbe, F. Dadgar,
S.W. Østerhus, Sustainable sewage sludge management: from
current practices to emerging nutrient recovery technologies,
Sustainability, 11 (2019) 3435, doi: 10.3390/su11123435.
- S. Shaddel, S. Ucar, J.-P. Andreassen, S.W. Østerhus, Enhancing
efficiency and economics of phosphorus recovery process by
customizing the product based on sidestream characteristics
– an alternative phosphorus recovery strategy, Water Sci.
Technol., 79 (2019) 1777–1789.
- M.L. Gillmore, L.A. Golding, B.M. Angel, M.S. Adams,
D.F. Jolley, Toxicity of dissolved and precipitated aluminium to
marine diatoms, Aquat. Toxicol., 174 (2016) 82–91.
- C. Poschenrieder, B. Gunsé, I. Corrales, J. Barceló, A glance into
aluminum toxicity and resistance in plants, Sci. Total Environ.,
400 (2008) 356–368.
- B. Boström, G. Persson, B. Broberg, Bioavailability of different
phosphorus forms in freshwater systems, Hydrobiologia,
170 (1988) 133–155.
- S. Bentancur, C.M. López-Vázquez, H.A. García, M. Duarte,
D. Travers, D. Brdjanovic, Modelling of a pulp mill wastewater
treatment plant for improving its performance on phosphorus
removal, Process Saf. Environ. Prot., 146 (2021) 208–219.
- E. Vaiopoulou, A. Aivasidis, A modified UCT method for
biological nutrient removal: configuration and performance,
Chemosphere, 72 (2008) 1062–1068.
- M. Maktabifard, E. Zaborowska, J. Makinia, Achieving energy
neutrality in wastewater treatment plants through energy
savings and enhancing renewable energy production, Rev.
Environ. Sci. Biotechnol., 17 (2018) 655–689.
- M. Smol, The use of membrane processes for the removal of
phosphorus from wastewater, Desal. Water Treat., 128 (2018)
397–406.
- M. Dudziak, M. Bodzek, Removal of xenoestrogens from water
during reverse osmosis and nanofiltration – effect of selected
phenomena on separation of organic micropollutants, Arch.
Civ. Eng. Environ., 1 (2008) 95–101.
- P.P. Kalbar, S. Karmakar, S.R. Asolekar, Selection of an
appropriate wastewater treatment technology: a scenariobased
multiple-attribute decision-making approach, J. Environ.
Manage., 113 (2012) 158–169.
- B. Cieślik, P. Konieczka, A review of phosphorus recovery
methods at various steps of wastewater treatment and
sewage sludge management. The concept of “no solid
waste generation” and analytical methods, J. Cleaner Prod.,
142 (2017) 1728–1740.
- A. Szabó, I. Takács, S. Murthy, G.T. Daigger, I. Licskó, S. Smith,
Significance of design and operational variables in chemical
phosphorus removal, Water Environ. Res., 80 (2008) 407–416.
- B.B. Liu, H. Liu, B. Zhang, J. Bi, Modeling nutrient release in
the Tai Lake Basin of China: source identification and policy
implications, Environ. Manage., 51 (2013) 724–737.
- L.M. Svendsen, B.G. Gustafsson, M. Pyhälä, Assessment
for Fulfillment of Nutrient Reduction Targets of the
HELCOM Nutrient Reduction Scheme, HELCOM,
Helsinki, Finland, 2015. Available at: http://www.helcom.
fi/baltic-sea-action-plan/nutrient-reduction-scheme/
progress-towards-country-wise-allocated-reduction-targets/
in-depth-information/data-on-changes-in-inputs-since-thereference-
period-1997-2003/ (accessed on 21.12.2020).
- A. Nowacka, M. Włodarczyk-Makuła, B. Macherzyński,
Comparison of effectiveness of coagulation with aluminum
sulfate and pre-hydrolyzed aluminum coagulants, Desal. Water
Treat., 52 (2014) 3843–3851.
- H.B. Chen, Y.W. Liu, B.-J. Ni, Q.L. Wang, D.B. Wang, C. Zhang,
X.M. Li, G.M. Zeng, Full-scale evaluation of aerobic/extendedidle
regime inducing biological phosphorus removal and
its integration with intermittent sand filter to treat domestic
sewage discharged from highway rest area, Biochem. Eng. J.,
113 (2016) 114–122.
- L. Rossi, S. Reuna, T. Fred, M. Heinonen, RAVITA Technology
– new innovation for combined phosphorus and nitrogen
recovery, Water Sci. Technol., 78 (2018) 2511–2517.
- H. Ødegaard, A.F. Skrøvseth, An evaluation of performance
and process stability of different processes for small wastewater
treatment plants, Water Sci. Technol., 35 (1997) 119–127.
- Z.G. Yuan, S. Pratt, D.J. Batstone, Phosphorus recovery
from wastewater through microbial processes, Curr. Opin.
Biotechnol., 23 (2012) 878–883.
- A.Z. Gu, L. Liu, J.B. Neethling, H.D. Stensel, S. Murthy,
Treatability and fate of various phosphorus fractions in different
wastewater treatment processes, Water Sci. Technol., 63 (2011)
804–810.
- L. Qiu, M. Zhang, X.Q. Yu, P. Zheng, A novel Fe(II)-Ca
synergistic phosphorus removal process: process optimization
and phosphorus recovery, Environ. Sci. Pollut. Res., 25 (2018)
1543–1550.
- A. Amann, O. Zoboli, J. Krampe, H. Rechberger, M. Zessner,
L. Egle, Environmental impacts of phosphorus recovery from
municipal wastewater, Resour. Conserv. Recycl., 130 (2018)
127–139.
- J. Havukainen, M.T. Nguyen, L. Hermann, M. Horttanainen,
M. Mikkilä, I. Deviatkin, L. Linnanen, Potential of
phosphorus recovery from sewage sludge and manure ash by
thermochemical treatment, Waste Manage., 49 (2016) 221–229.
- O. Krüger, C. Adam, Recovery potential of German sewage
sludge ash, Waste Manage., 45 (2015) 400–406.
- D.J. Batstone, T. Hülsen, C.M. Mehta, J. Keller, Platforms for
energy and nutrient recovery from domestic wastewater:
a review, Chemosphere, 140 (2015) 2–11.