References

  1. T. Petzoldt, D. Uhlmann, Nitrogen emissions into freshwater ecosystems: is there a need for nitrate elimination in all wastewater treatment plants?, Acta Hydroch. Hydrob., 34 (2006) 305–324.
  2. M. Callisto, J. Molozzi, J. Barbosa, Eutrophication of Lakes, Eutrophication Causes, Consequences Control, Vol. 2, Springer Science & Business Media, Dordrecht, 2014, pp. 1–262.
  3. K. Rankinen, H. Keinänen, J.E. Cano Bernal, Influence of climate and land use changes on nutrient fluxes from Finnish rivers to the Baltic Sea, Agric. Ecosyst. Environ., 216 (2016) 100–115.
  4. F. Hernandez-Sancho, M. Molinos-Senante, R. Sala-Garrido, Cost modelling for wastewater treatment processes, Desalination, 268 (2011) 1–5.
  5. R.A. Vollenweider, J.J. Kerekes, Eutrophication of Waters: Monitoring, Assessment and Control, OECD – Organization for Economic Co-Operation and Development, Paris (France), (ISBN: 92-64-22298-7), 1982.
  6. E. Neverova-Dziopak, O. Dan, Classification of the State of Marine Coastal Waters in Ukraine in the Example of the Sea of Azov in the Mariupol Region, Ochr. Środowiska., 40 (2018) 29–34.
  7. J. Nakajima, Y. Murata, M. Sakamoto, Comparison of several methods for BAP measurement, Water Sci. Technol., 53 (2006) 329–336.
  8. European Commission, Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Wastewater Treatment, Council of the European Union, Brussels, 1991.
  9. European Commission, Water Framework Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy, Council of the European Union, Brussels, 2000.
  10. HELCOM, State of the Baltic Sea – Second HELCOM Holistic Assessment 2011–2016, 2017.
  11. I. Deviatkin, L. Lyu, S.Q. Chen, J. Havukainen, F. Wang, M. Horttanainen, M. Mänttäri, Technical implications and global warming potential of recovering nitrogen released during continuous thermal drying of sewage sludge, Waste Manage., 90 (2019) 132–140.
  12. M. Smol, The importance of sustainable phosphorus management in the circular economy (CE) model: the Polish case study, J. Mater. Cycles Waste Manage., 21 (2019) 227–238.
  13. C. Kabbe, Chapter 3 – Circular Economy: Bridging the Gap Between Phosphorus Recovery and Recycling, H. Ohtake, S. Tsuneda, Eds., Phosphorus Recovery and Recycling, Springer Singapore, Singapore, 2019, pp. 45–57.
  14. H. Kroiss, H. Rechberger, L. Egle, Phosphorus in Water Quality and Waste Management, S. Kumar, Eds., Integrated Waste Management – Volume II, IntechOpen Limited, London, 2011, doi: 10.5772/18482.
  15. European Sustainable Phosphorus Platform, ESPP Scope Newsletter n°129, European Sustainable Phosphorus Platform, Brussels, 2019.
  16. H. Herzel, O. Krüger, L. Hermann, C. Adam, Sewage sludge ash — a promising secondary phosphorus source for fertilizer production, Sci. Total Environ., 542 (2016) 1136–1143.
  17. M. Smol, M. Preisner, A. Bianchini, J. Rossi, L. Hermann, T. Schaaf, J. Kruopienė, K. Pamakštys, M. Klavins, R. Ozola- Davidane, D. Kalnina, E. Strade, V. Voronova, K. Pachel, X.S. Yang, B.-M. Steenari, M. Svanström, Strategies for sustainable and circular management of phosphorus in the Baltic Sea region: the holistic approach of the InPhos project, Sustainability, 12 (2020) 2567, doi: 10.3390/su12062567.
  18. H. Tulsidas, S. Gabriel, K. Kiegiel, N. Haneklaus, Uranium resources in EU phosphate rock imports, Resour. Policy, 61 (2019) 151–156.
  19. J. Rogowska, M. Cieszynska-Semenowicz, W. Ratajczyk, L. Wolska, Micropollutants in treated wastewater, Ambio, 49 (2020) 487–503.
  20. L. Egle, H. Rechberger, J. Krampe, M. Zessner, Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies, Sci. Total Environ., 571 (2016) 522–542.
  21. C. Vogel, R. Sekine, D. Steckenmesser, E. Lombi, D. Steffens, C. Adam, Phosphorus availability of sewage sludge-based fertilizers determined by the diffusive gradients in thin films (DGT) technique, J. Plant Nutr. Soil Sci., 180 (2017) 594–601.
  22. S. Suthar, K. Kumar, P.K. Mutiyar, Nutrient recovery from compostable fractions of municipal solid wastes using vermitechnology, J. Mater. Cycles Waste Manage., 17 (2015) 174–184.
  23. K. Rosiek, Directions and challenges in the management of municipal sewage sludge in Poland in the context of the circular economy, Sustainability, 12 (2020) 3686, doi: 10.3390/ su12093686.
  24. M. Smol, C. Adam, S. Anton Kugler, Inventory of Polish municipal sewage sludge ash (SSA) – mass flows, chemical composition, and phosphorus recovery potential, Waste Manage., 116 (2020) 31–39.
  25. R.H.E.M. Koppelaar, H.P. Weikard, Assessing phosphate rock depletion and phosphorus recycling options, Global Environ. Change, 23 (2013) 1454–1466.
  26. M. Smol, C. Adam, M. Preisner, Circular economy model framework in the European water and wastewater sector, J. Mater. Cycles Waste Manage., 22 (2020) 682–697.
  27. P. Ghisellini, C. Cialani, S. Ulgiati, A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems, J. Cleaner Prod., 114 (2016) 11–32.
  28. B. Li, M.T. Brett, The influence of dissolved phosphorus molecular form on recalcitrance and bioavailability, Environ. Pollut., 182 (2013) 37–44.
  29. M. Scholz, Chapter 15 – Activated Sludge Processes, M. Scholz, Ed., Wetlands for Water Pollution Control, 2nd ed., Elsevier, Amsterdam, 2016, pp. 91–105.
  30. M.C.M. Van Loosdrecht, C.M. Lopez-Vazquez, S.C.F. Meijer, C.M. Hooijmans, D. Brdjanovic, Twenty-five years of ASM1: past, present and future of wastewater treatment modelling, J. Hydroinf., 17 (2015) 697–718.
  31. R. Bashar, K. Gungor, K.G. Karthikeyan, P. Barak, Cost effectiveness of phosphorus removal processes in municipal wastewater treatment, Chemosphere, 197 (2018) 280–290.
  32. D. Brdjanovic, M.C.M. van Loosdrecht, P. Versteeg, C.M. Hooijmans, G.J. Alaerts, J.J. Heijnen, Modeling COD, N and P removal in a full-scale wwtp Haarlem Waarderpolder, Water Res., 34 (2000) 846–858.
  33. O. Ashrafi, L. Yerushalmi, F. Haghighat, Wastewater treatment in the pulp-and-paper industry: a review of treatment processes and the associated greenhouse gas emission, J. Environ. Manage., 158 (2015) 146–157.
  34. K.C. van Dijk, J.P. Lesschen, O. Oenema, Phosphorus flows and balances of the European Union Member States, Sci. Total Environ., 542 (2016) 1078–1093.
  35. N. Arumugam, S. Chelliapan, H. Kamyab, S. Thirugnana, N. Othman, N.S. Nasri, Treatment of wastewater using seaweed: a review, Int. J. Environ. Res. Public Health, 15 (2018) 1–17, doi: 10.3390/ijerph15122851.
  36. B. Piotrowska, D. Słyś, S. Kordana-Obuch, K. Pochwat, Critical analysis of the current state of knowledge in the field of waste heat recovery in sewage systems, Resources, 9 (2020) 72, doi: 10.3390/resources9060072.
  37. M. Henze, Mark van Loosdrecht, George Ekama, D. Brdjanovic, Biological Wastewater Treatment, IWA Publishing, London, 2008.
  38. J. Ferrer, A. Seco, J. Serralta, J. Ribes, J. Manga, E. Asensi, J.J. Morenilla, F. Llavador, DESASS: a software tool for designing, simulating and optimising WWTPs, Environ. Modell. Software, 23 (2008) 19–26.
  39. M. Cramer, T. Koegst, J. Traenckner, Multi-criterial evaluation of P-removal optimization in rural wastewater treatment plants for a sub-catchment of the Baltic Sea, Ambio, 47 (2018) 93–102.
  40. Z. Kowalewski, Differences in the ASM model caused by data structure, E3S Web Conf., 45 (2018) 3–9.
  41. M. Henze, W. Gujer, T. Mino, M. van Loosedrecht, Activated Sludge Models ASM1, ASM2, ASM2d and ASM3, IWA Publishing, London, 2006.
  42. A. Elawwad, M. Matta, M. Abo-Zaid, H. Abdel-Halim, Plantwide modeling and optimization of a large-scale WWTP using BioWin’s ASDM model, J. Water Process Eng., 31 (2019) 100819, doi: 10.1016/j.jwpe.2019.100819.
  43. R. Vitanza, I. Colussi, A. Cortesi, V. Gallo, Implementing a respirometry-based model into BioWin software to simulate wastewater treatment plant operations, J. Water Process Eng., 9 (2016) 267–275.
  44. M. Preisner, E. Neverova-Dziopak, Z. Kowalewski, Mitigation of eutrophication caused by wastewater discharge: a simulationbased approach, Ambio, 50 (2021) 413–424.
  45. German Association for Water Wastewater and Waste, German ATV Standards: Design and Construction of Wastewater Treatment Systems. Standard ATV-A 106E, German Association for Water, Wastewater and Waste, Berlin, 1995.
  46. M. Preisner, E. Neverova-Dziopak, Z. Kowalewski, Analysis of eutrophication potential of municipal wastewater, Water Sci. Technol., 81 (2020) 1994–2003.
  47. C. Warwick, A. Guerreiro, A. Soares, Sensing and analysis of soluble phosphates in environmental samples: a review, Biosens. Bioelectron., 41 (2013) 1–11.
  48. M.T. Brett, B. Li, The Bioavailable Phosphorus (BAP) Fraction in Effluent from Advanced Secondary and Tertiary Treatment, IWA Publishing, London, 2015.
  49. L. Przywara, Warunki i możliwości usuwania fosforanów i fosforu ogólnego ze ścieków przemysłowych, Cracow University of Technology (Ph.D. Thesis), Bielsko-Biala, 2006.
  50. W. Adamczyk, A. Jachimowski, Impact of biogenic components on quality and eutrophication of flowing surface waters constituting the source of drinking water for the city of Kraków, Pol. Food Sci. Technol. Qual., 6 (2013) 175–190.
  51. R.D. Li, J. Yin, W.Y. Wang, Y.L. Li, Z.H. Zhang, Transformation of phosphorus during drying and roasting of sewage sludge, Waste Manage., 34 (2014) 1211–1216.
  52. P.M. Melia, A.B. Cundy, S.P. Sohi, P.S. Hooda, R. Busquets, Trends in the recovery of phosphorus in bioavailable forms from wastewater, Chemosphere, 186 (2017) 381–395.
  53. S. Shaddel, H. Bakhtiary-Davijany, C. Kabbe, F. Dadgar, S.W. Østerhus, Sustainable sewage sludge management: from current practices to emerging nutrient recovery technologies, Sustainability, 11 (2019) 3435, doi: 10.3390/su11123435.
  54. S. Shaddel, S. Ucar, J.-P. Andreassen, S.W. Østerhus, Enhancing efficiency and economics of phosphorus recovery process by customizing the product based on sidestream characteristics – an alternative phosphorus recovery strategy, Water Sci. Technol., 79 (2019) 1777–1789.
  55. M.L. Gillmore, L.A. Golding, B.M. Angel, M.S. Adams, D.F. Jolley, Toxicity of dissolved and precipitated aluminium to marine diatoms, Aquat. Toxicol., 174 (2016) 82–91.
  56. C. Poschenrieder, B. Gunsé, I. Corrales, J. Barceló, A glance into aluminum toxicity and resistance in plants, Sci. Total Environ., 400 (2008) 356–368.
  57. B. Boström, G. Persson, B. Broberg, Bioavailability of different phosphorus forms in freshwater systems, Hydrobiologia, 170 (1988) 133–155.
  58. S. Bentancur, C.M. López-Vázquez, H.A. García, M. Duarte, D. Travers, D. Brdjanovic, Modelling of a pulp mill wastewater treatment plant for improving its performance on phosphorus removal, Process Saf. Environ. Prot., 146 (2021) 208–219.
  59. E. Vaiopoulou, A. Aivasidis, A modified UCT method for biological nutrient removal: configuration and performance, Chemosphere, 72 (2008) 1062–1068.
  60. M. Maktabifard, E. Zaborowska, J. Makinia, Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production, Rev. Environ. Sci. Biotechnol., 17 (2018) 655–689.
  61. M. Smol, The use of membrane processes for the removal of phosphorus from wastewater, Desal. Water Treat., 128 (2018) 397–406.
  62. M. Dudziak, M. Bodzek, Removal of xenoestrogens from water during reverse osmosis and nanofiltration – effect of selected phenomena on separation of organic micropollutants, Arch. Civ. Eng. Environ., 1 (2008) 95–101.
  63. P.P. Kalbar, S. Karmakar, S.R. Asolekar, Selection of an appropriate wastewater treatment technology: a scenariobased multiple-attribute decision-making approach, J. Environ. Manage., 113 (2012) 158–169.
  64. B. Cieślik, P. Konieczka, A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods, J. Cleaner Prod., 142 (2017) 1728–1740.
  65. A. Szabó, I. Takács, S. Murthy, G.T. Daigger, I. Licskó, S. Smith, Significance of design and operational variables in chemical phosphorus removal, Water Environ. Res., 80 (2008) 407–416.
  66. B.B. Liu, H. Liu, B. Zhang, J. Bi, Modeling nutrient release in the Tai Lake Basin of China: source identification and policy implications, Environ. Manage., 51 (2013) 724–737.
  67. L.M. Svendsen, B.G. Gustafsson, M. Pyhälä, Assessment for Fulfillment of Nutrient Reduction Targets of the HELCOM Nutrient Reduction Scheme, HELCOM, Helsinki, Finland, 2015. Available at: http://www.helcom. fi/baltic-sea-action-plan/nutrient-reduction-scheme/ progress-towards-country-wise-allocated-reduction-targets/ in-depth-information/data-on-changes-in-inputs-since-thereference- period-1997-2003/ (accessed on 21.12.2020).
  68. A. Nowacka, M. Włodarczyk-Makuła, B. Macherzyński, Comparison of effectiveness of coagulation with aluminum sulfate and pre-hydrolyzed aluminum coagulants, Desal. Water Treat., 52 (2014) 3843–3851.
  69. H.B. Chen, Y.W. Liu, B.-J. Ni, Q.L. Wang, D.B. Wang, C. Zhang, X.M. Li, G.M. Zeng, Full-scale evaluation of aerobic/extendedidle regime inducing biological phosphorus removal and its integration with intermittent sand filter to treat domestic sewage discharged from highway rest area, Biochem. Eng. J., 113 (2016) 114–122.
  70. L. Rossi, S. Reuna, T. Fred, M. Heinonen, RAVITA Technology – new innovation for combined phosphorus and nitrogen recovery, Water Sci. Technol., 78 (2018) 2511–2517.
  71. H. Ødegaard, A.F. Skrøvseth, An evaluation of performance and process stability of different processes for small wastewater treatment plants, Water Sci. Technol., 35 (1997) 119–127.
  72. Z.G. Yuan, S. Pratt, D.J. Batstone, Phosphorus recovery from wastewater through microbial processes, Curr. Opin. Biotechnol., 23 (2012) 878–883.
  73. A.Z. Gu, L. Liu, J.B. Neethling, H.D. Stensel, S. Murthy, Treatability and fate of various phosphorus fractions in different wastewater treatment processes, Water Sci. Technol., 63 (2011) 804–810.
  74. L. Qiu, M. Zhang, X.Q. Yu, P. Zheng, A novel Fe(II)-Ca synergistic phosphorus removal process: process optimization and phosphorus recovery, Environ. Sci. Pollut. Res., 25 (2018) 1543–1550.
  75. A. Amann, O. Zoboli, J. Krampe, H. Rechberger, M. Zessner, L. Egle, Environmental impacts of phosphorus recovery from municipal wastewater, Resour. Conserv. Recycl., 130 (2018) 127–139.
  76. J. Havukainen, M.T. Nguyen, L. Hermann, M. Horttanainen, M. Mikkilä, I. Deviatkin, L. Linnanen, Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment, Waste Manage., 49 (2016) 221–229.
  77. O. Krüger, C. Adam, Recovery potential of German sewage sludge ash, Waste Manage., 45 (2015) 400–406.
  78. D.J. Batstone, T. Hülsen, C.M. Mehta, J. Keller, Platforms for energy and nutrient recovery from domestic wastewater: a review, Chemosphere, 140 (2015) 2–11.