References

  1. C.H. Zhou, Y. Ling, H.Y. Cao, Dewatering capability and morphological of municipal sludge, Zhongguo Huanjing Kexue/China Environmental Science, 33 (2013) 898–903.
  2. C.H. Lee, J.C. Liu, Sludge dewaterability and floc structure in dual polymer conditioning, Adv. Environ. Res., 5 (2001) 129–136.
  3. Q. Guan, M. Tang, H. Zheng, H. Teng, X. Tang, Y. Liao, Investigation of sludge conditioning performance and mechanism by examining the effect of charge density on cationic polyacrylamide microstructure, Desal. Wat. Treat., 57(28) (2016) 12988–12997.
  4. E. Dieudé-Fauvel, S.K. Dentel, Sludge conditioning: impact of polymers on floc structure, J. Residuals Sci. Technol., 8 (2011) 101–108.
  5. H.Y. Chung, D.J. Lee, Porosity and interior structure of flocculated activated sludge floc, J. Colloid Interface Sci., 267 (2003) 136–143.
  6. M. Worwąg, A. Kwarciak-Kozłowska, Volatile Fatty Acid (VFA) Yield from Sludge Anaerobic Fermentation Through a Biotechnological Approach, In: Industrial and Municipal Sludge: Emerging Concerns and Scope for Resource Recovery, Butterworth-Heinemann, 2019, pp. 681–703.
  7. G.J. Liu, L.W. Deng, Rheological properties of anaerobic sludge, Environ. Technol. Rev., 6 (2017) 199–208.
  8. F. Markis, J.C. Baudez, R. Parthasarathy, P. Slatter, N. Eshtiaghi, Rheological characterisation of primary and secondary sludge: impact of solids concentration, Chem. Eng. J., 253 (2014) 526–537.
  9. B. Bień, J.D. Bień, Coagulant and polyelectrolyte application performance testing in sonicated sewage sludge dewatering, Desal. Wat. Treat., 57 (2016) 1154–1162.
  10. R. Kotzé, V. Fester, B. Kholisa, R. Haldenwang, W. Rössle, Commissioning of a novel in-line rheometery system in a wastewater treatment plant for more efficient polymer dosing, Flow Meas. Instrum., 65 (2019) 309–317.
  11. L. Wolny, P. Wolski, I. Zawieja, Rheological parameters of dewatered sewage sludge after conditioning, Desalination, 222 (2008) 382–387.
  12. S.Y. Edifor, Q.D. Nguyen, P. van Eyk, P. Biller, D.M. Lewis, Rheological studies of municipal sewage sludge slurries for hydrothermal liquefaction biorefinery applications, Chem. Eng. Res. Des., 166 (2021) 148–157.
  13. E. Zielewicz, Effects of ultrasonic disintegration of excess sewage sludge, Top. Curr. Chem., 374 (2016) 67.
  14. C.H. Zhou, Y. Ling, M. Zeng, X.Y. Li, Influence of microwave and ultrasound on sludge dewaterability, Adv. Mater Res., 955–959 (2014) 2074–2079.
  15. M. Zieliński, M. Dębowski, M. Krzemieniewski, P. Rusanowska, M. Zielińska, A. Cydzik-Kwiatkowska, A. Głowacka, Application of an innovative ultrasound disintegrator for sewage sludge conditioning before methane fermentation, J. Ecol. Eng., 19 (2018) 240–247.
  16. C. Zhou, Y. Ling, M. Zeng, Y. Li, Analysis of particle size distribution and water content on microwave/ultrasound pretreated sludge, Chin. J. Environ. Eng., 11 (2017) 529–534.
  17. P. Travnicek, T. Vitez, P. Junga, E. Krcalova, J. Sevcikova, J. Marecek, P. Machal, Original research rheological measurements of disintegrated activated sludge, Polish J. Environ. Stud., 22 (2013) 1209–1212.
  18. L. Vachoud, E. Ruiz, M. Delalonde, C. Wisniewski, How the nature of the compounds present in solid and liquid compartments of activated sludge impact its rheological characteristics, Environ. Technol., 40 (2019) 60–71.
  19. F. Liang, M. Sauceau, G. Dusserre, P. Arlabosse, A uniaxial cyclic compression method for characterizing the rheological and textural behaviors of mechanically dewatered sewage sludge, Water Res., 113 (2017) 171–180.
  20. P.A. Tuan, M. Sillanpää, Effect of freeze/thaw conditions, polyelectrolyte addition, and sludge loading on sludge electro-dewatering process, Chem. Eng. J., 164 (2010) 85–91.
  21. B. Fryźlewicz-Kozak, J. Jamróz, M. Pachołek, Research on rheological properties of sludge, Inż. Ap. Chem., 54 (2015) 033–035 [in polish].
  22. M.M. Sozański, E.S. Kempa, K. Grocholski, J.B. Bień, The rheological experiment in sludge properties research, Water Sci. Technol., 36 (1997) 69–78.