References
- A. Beretta-Blanco, L. Carrasco-Letelier, Relevant factors
in the eutrophication of the Uruguay River and the Río
Negro, Sci. Total Environ., 761 (2021) 143299, doi: 10.1016/j.
scitotenv.2020.143299.
- M. Gerke, D. Hübner, J. Schneider, C. Winkelmann, Can
top-down effects of cypriniform fish be used to mitigate
eutrophication effects in medium-sized European rivers?,
Sci. Total Environ., 755 (2021) 142547, doi: 10.1016/j.scitotenv.2020.142547.
- V. Dahm, D. Hering, D. Nemitz, W. Graf, A. Schmidt-Kloiber,
P. Leitner, A. Melcher, C.K. Feld, Effects of physico-chemistry,
land use and hydromorphology on three riverine organism
groups: a comparative analysis with monitoring data from
Germany and Austria, Hydrobiologia, 704 (2013) 389–415.
- D. Hering, R.K. Johnson, S. Kramm, S. Schmutz, K. Szoszkiewicz,
P.F.M. Verdonschot, Assessment of European streams
with diatoms, macrophytes, macroinvertebrates and fish: a
comparative metric-based analysis of organism response to
stress, Freshwater Biol., 51 (2006) 1757–1785.
- O. Bilous, S. Barinova, P. Klochenko, Phytoplankton communities
in ecological assessment of the Southern Bug River
upper reaches (Ukraine), Ecohydrol. Hydrobiol., 12 (2012)
211–230.
- N. Hagemann, F. Blumensaat, F. Tavares Wahren, J. Trümper,
C. Burmeister, R. Moynihan, N. Scheifhacken, The long road to
improving the water quality of the Western Bug River (Ukraine)
– a multi-scale analysis, J. Hydrol., 519 (2014) 2436–2447.
- V. Yakovlev, Y. Vystavna, D. Diadin, Y. Vergeles, Nitrates in
springs and rivers of East Ukraine: distribution, contamination
and fluxes, Appl. Geochem., 53 (2015) 71–78.
- J. Rozemeijer, R. Noordhuis, K. Ouwerkerk, M. Dionisio Pires,
A. Blauw, A. Hooijboer, G.J. van Oldenborgh, Climate variability
effects on eutrophication of groundwater, lakes, rivers, and
coastal waters in the Netherlands, Sci. Total Environ., 771 (2021)
145366, doi: 10.1016/j.scitotenv.2021.145366.
- Y.R. Grokhovska, I.O. Parfeniuk, S.V. Konontsev, T.V. Poltavchenko,
Analysis of surface water quality and crustacean
diseases in fish (the Ustya River basin, Ukraine), Ukr. J. Ecol.,
11 (2021) 94–102.
- I.L. Sukhodolska, I.B. Gryuk, Seasonal Variability of the
Chemical Composition of Surface Waters of the Ustya River,
BIOLOGICAL RESEARCH: Collection of Scientific Works of
the V All-Ukrainian Scientific-Practical Conference of Young
Scientists and Students, ZhSU Publishing House, I. Franko,
Zhytomyr, 2014, pp. 437–440.
- S.L. Yun, S.J. Kim, Y.L. Park, S.W. Kang, P.J. Kwak, J.J. Ko,
J.H. Ahn, Evaluation of capping materials for the stabilization
of contaminated sediments, Mater. Sci. Forum, 544–545 (2007)
565–568.
- H.B. Yin, J.C. Zhu, W.Y. Tang, Management of nitrogen and
phosphorus internal loading from polluted river sediment
using Phoslock® and modified zeolite with intensive tubificid
oligochaetes bioturbation, Chem. Eng. J., 353 (2018) 46–55.
- A. Siciliano, G.M. Curcio, C. Limonti, Experimental analysis and
modeling of nitrate removal through zero-valent magnesium
particles, Water, 11 (2019) 1276, doi: 10.3390/w11061276.
- D. Burska, D. Pryputniewicz-Flis, A. Bankowska-Sobczak,
G. Brenk, T. Woszczyk, The efficiency of P-removal from natural
waters with sorbents placed in water permeable nonwovens,
IOP Conf. Ser.: Earth Environ. Sci., 362 (2019) 012099.
- A. Sieczka, E. Koda, A. Miszkowska, P. Osiński, Identification
of Processes and Migration Parameters for Conservative
and Reactive Contaminants in the Soil-Water Environment,
L. Zhan, Y. Chen, A. Bouazza, Eds., Proceedings of the 8th
International Congress on Environmental Geotechnics, Volume
1, The International Congress on Environmental Geotechnics,
Environmental Science and Engineering, Springer, Singapore,
2019, pp. 551–559.
- F. Haghseresht, S. Wang, D. Do, A novel lanthanum-modified
bentonite, Phoslock, for phosphate removal from wastewaters,
Appl. Clay Sci., 46 (2009) 369–375.
- M. Kasprzyk, M. Gajewska, Preliminary results from application
Phoslock® to remove phosphorus compounds from wastewater,
J. Ecol. Eng., 18 (2017) 82–89.
- A. Grela, M. Łach, J. Mikuła, An efficacy assessment of
phosphate removal from drainage waters by modified reactive
material, Materials, 13 (2020) 1190, doi: 10.3390/ma13051190.
- K. Finsterle, Overview of Phoslock® Properties and its Use in
the Aquatic Environment, Phoslock Europe GmbH, 2014.
- M.A. Zeller, M.J. Alperin, The efficacy of Phoslock® in
reducing internal phosphate loading varies with bottom water
oxygenation, Water Res., 11 (2021) 100095, doi: 10.1016/j.
wroa.2021.100095.
- L. Zhang, X. Gu, C. Fan, J. Shang, Q. Shen, Z. Wang, J. Shen,
Impact of different benthic animals on phosphorus dynamics
across the sediment-water interface, J. Environ. Sci., 22 (2010)
1674–1682.
- Y. Zhang, L. Cheng, K.E. Tolonen, H. Yin, J. Gao, Z. Zhang,
K. Li, Y. Cai, Substrate degradation and nutrient enrichment
structuring macroinvertebrate assemblages in agriculturally
dominated Lake Chaohu Basins, China, Sci. Total Environ.,
627 (2018) 57–66.
- B. Gao, Q. Yue, J. Miao, J. Evaluation of polyaluminium ferric
chloride (PAFC) as a composite coagulant for water and
wastewater treatment, Water Sci Technol., 47 (2003) 127–132.
- L. Chekli, C. Eripret, S.H. Park, S.A.A. Tabatabai, O. Vronska,
B. Tamburic, J.H. Kim, Shon, Coagulation performance and floc
characteristics of polytitanium tetrachloride (PTC) compared
with titanium tetrachloride (TiCl4) and ferric chloride (FeCl3) in
algal turbid water, Sep. Purif. Methods, 175 (2017) 99–106.
- S. Ding, Y. Deng, H. Li, C. Fang, N. Gao, W. Chu, Coagulation
of iodide-containing resorcinol solution or natural waters with
ferric chloride can produce iodinated coagulation by-products,
Environ. Sci. Technol., 53 (2019) 12407–12415.
- EPA, Acidification and Liming of Swedish Freshwaters,
National Swedish Environmental Protection Agency, Solna,
1991.
- L. Håkanson, A general management model to optimize lake
liming operations, Lakes Reservoirs Res. Manage., 8 (2003)
105–140.
- M.J. Brandt, K.M. Johnson, A.J. Elphinston, D.D. Ratnayaka,
Chapter 8 – Storage, Clarification and Chemical Treatment,
M.J. Brandt, K.M. Johnson, A.J. Elphinston, D.D. Ratnayaka,
Eds., Twort’s Water Supply, 7th ed., Butterworth-Heinemann,
Boston, 2017, pp. 323–366.
- L. Natkaniec-Nowak, M. Dumańska-Słowik, B. Naglik,
V. Melnychuk, M. Krynickaya, W. Smoliński, M. Sikorska-
Jaworowska, P. Stach, D. Kubica, K. Ładoń, Depositional
environment of paleogen amber-bearing qurtz-glauconite sands
from Zdolbuniv (Rivne region, NW Ukraine): mineralogical
and petrographical evidences, Miner. Resour. Manage.,
33 (2017) 45–62.
- http://minerals-ua.info/zviti-map.php?rep=mpasp_30&pasport=541
- http://minerals-ua.info/zviti-map.php?rep=mpasp_30&pasport=1565
- DSTU B.V. 2.1-2-96 State Standard. Bases and Foundations of
Buildings and Structures, Soils. Classification. Kyiv, The State
Committee of Ukraine, 1997, 47 p.
- DSTU B V. 2.7-232:2010 Construction Materials. Dense Natural
Sand for Construction Materials, Products, Structures and
Operations, Technical Specifications, UKRA34425, 2011, 31 p.
- DSTU B.V. 2.7-29-95 Building Materials. Natural Fine Aggregate
from Waste Industry for Artificial Building Materials, Products,
and Construction Works, Classification. Kyiv. Ministry of
Regional Development of Ukraine, 1996, 35 p.
- GOST 25584-90 Soils. Methods of Laboratory Determination
of Filtration Coefficient.
- W. Dickson, Y-W. Brodin, Strategies and Methods for Freshwater
Liming, L. Henrikson, Y.W. Brodin, Eds., Liming of Acidified
Surface Waters: A Swedish Synthesis, Springer, Berlin, 1995,
pp. 81–124.
- Y. Trach, V. Kosinov, G. Melnichuk, M. Michel, L. Reczek, The
use of saponite tuffs in technologies to improve groundwater
quality for drinking, Bulletin of NUWM 2, (2018) 210–221.
- L. Reczek, M.M. Michel, Y. Trach, T. Siwiec, M. Tytkowska-
Owerko, The kinetics of manganese sorption on Ukrainian tuff
and basalt—order and diffusion models analysis, Minerals,
10 (2020) 1065, doi: 10.3390/min10121065.
- A. Miszkowska, S. Lenart, E. Koda, Changes of permeability
of nonwoven geotextiles due to clogging and cyclic water flow
in laboratory conditions, Water, 9 (2017) 660, doi: 10.3390/w9090660.
- S. Bajkowski, The inflow length of the stream on the crest of the
permeable sill with sharp-crested weir on the upstream slope,
Acta Sci. Pol. Architectura, 19 (2020) 73–84.
- E. Maciejewska, Redefining cities in view of climatic changes
“Sponge City” – examples of solutions in Chinese cities at
risk of flooding – Wuhan, Changde and Jinhua, Acta Sci. Pol.
Architectura, 19 (2020) 11–19.