References

  1. H.B. Malidareh, A.H. Mahvi, M. Yunesian, M. Alimohammadi, S. Nazmara, Effect of fertilizer application on paddy soil heavy metals concentration and groundwater in North of Iran, Middle East J. Sci. Res., 20 (2014) 1721–1727.
  2. Y.Y. Jin, Y.N. Luan, Y.C. Ning, L.Y. Wang, Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review, Appl. Sci., 8 (2018) 1336, doi: 10.3390/app8081336.
  3. A. Gałązka, Zanieczyszczenia gleb substancjami ropopochodnymi z uwzględnieniem biologicznych metod ich oczyszczenia (Soil contamination with petroleum substances, taking into account biological methods of their purification), Kosmos, 64 (2015) 145–164.
  4. A. Ociepa-Kubicka, E. Ociepa, Toksyczne oddziaływanie metali ciężkich na rośliny, zwierzęta i ludzi. Inżynieria i Ochrona Środowiska (Toxic effect of heavy metals on plants, animals and people), 15 (2012) 169–180.
  5. Q.-R. Wang, Y.-S. Cui, X.-M. Liu, Y.-T. Dong, P. Christie, Soil contamination and plant uptake of heavy metals at polluted sites in China, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 38 (2003) 823–838.
  6. M. Pueyo, J.F. López-Sánchez, G. Rauret, Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils, Anal. Chim. Acta, 504 (2004) 217–225.
  7. Agency for Toxic Substances and Disease Registry (ATSDR). Available at: https://www.atsdr.cdc.gov/spl
  8. A. Kaczyńska, M. Zajączkowski, M. Grzybiak, Toksyczny wpływ kadmu na rośliny i człowieka, Ann. Acad Med Gedan (Toxic effect of cadmium on plants and humans), 45 (2015) 65–70.
  9. K.B. Chipasa, Accumulation and fate of selected heavy metals in a biological wastewater treatment system, Waste Manage., 23 (2003) 135–143.
  10. K. Chojnacka, A. Chojnacki, H. Górecka, H. Górecki, Bioavailability of heavy metals from polluted soils to plants, Sci. Total Environ., 337 (2005) 175–182.
  11. Regulation of the Minister of the Environment of September 1, 2016 on Methods of Earth Diagnostics.
  12. R.M. Karakagh, M. Chorom, H. Motamedi, Y.K. Kalkhajeh, S. Oustan, Biosorption of Cd and Ni by inactivated bacteria isolated from agricultural soil treated with sewage sludge, Ecohydrol. Hydrobiol., 12 (2012) 191–198.
  13. V. Achal, D. Kumari, X.L. Pan, Bioremediation of chromium contaminated soil by a brown-rot fungus, Gloeophyllum sepiarium, Res. J. Microbiol., 6 (2011) 166–171.
  14. D. Shikha, P.K. Singh, In situ phytoremediation of heavy metal–contaminated soil and groundwater: a green inventive approach, Environ. Sci. Pollut. Res. Int., 28 (2021) 4104–4124.
  15. C. Cameselle, S. Gouveia, Phytoremediation of mixed contaminated soil enhanced with electric current, J. Hazard. Mater., 361 (2019) 95–102.
  16. E. Karwowska, D. Andrzejewska-Morzucha, M. Łebkowska, A. Tabernacka, M. Wojtkowska, A. Telepko, A. Konarzewska, Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria, J. Hazard. Mater., 264 (2014) 203–210.
  17. A. Schippers, Biogeochemistry of Metal Sulfide Oxidation in Mining Environments, Sediments and Soils, Biogeochemistry – Past and Present, Special Paper, 379, Geological Society of America, Boulder, Colorado, USA, 2004, pp. 49–62.
  18. H. Garg, N. Nagar, A. Dash, C.S. Gahan, Efficiency assessment of pure Fe oxidizing microorganisms in iron supplemented and non-supplemented medium and pure S oxidizing microorganisms for bioleaching of mobile phone printed circuit boards, Biosci. Biotechnol. Res. Commun.,12 (2019) 425–434.
  19. M.A. Diaz, I.U. De Ranson, B. Dorta, I.M. Banat, M.L. Blazquez, F. Gonzalez, J.A. Muñoz, A. Ballester, Metal removal from contaminated soils through bioleaching with oxidizing bacteria and rhamnolipid biosurfactants, Soil Sediment Contam., 24 (2015) 16–29.
  20. G. Girma, Microbial bioremediation of some heavy metals in soils: an updated review, Egypt. Acad. J. Biol. Sci. (G. Microbiol.), 7 (2015) 29–45.
  21. Y. Deng, X.D. Liu, H.W. Liu, H.D. Jiang, L.F. Xu, Y.H. Xiao, H.Q. Yin Y.L. Liang, Bioleaching of cadmium from contaminated paddy fields by consortium of autotrophic and indigenous cadmium-tolerant bacteria, Solid State Phenom., 262 (2017) 617–621.
  22. D.A. Andrzejewska-Górecka, A. Poniatowska, B. Macherzynski, D. Wojewódka, M.E. Wszelaka-Rylik, Comparison of the effectiveness of biological and chemical leaching of copper, nickel and zinc from circuit boards, J. Ecol. Eng., 20 (2019) 62–69.
  23. W. Sajjad, G. Zheng, G. Din, X.X. Ma, M. Rafiq, W. Xu, Metals extraction from sulfide ores with microorganisms: the bioleaching technology and recent developments, Trans. Indian Inst. Met., 72 (2019) 559–579.
  24. T.-J. Xu, Y.-P. Ting, Optimization on bioleaching of incinerator fly ash by Aspergillus niger – use of central composite design, Enzyme Microb. Technol., 35 (2004) 444–454.
  25. Z.H. Guo, L. Zhang, X. Cheng, X.Y. Xiao, F.K. Pan, K.Q. Jiang, Effects of pH, pulp density and particle size on solubilization of metals from a Pb/Zn smelting slag using indigenous moderate thermophilic bacteria, Hydrometallurgy, 104 (2010) 25–31.
  26. R. Nareshkumar, R. Nagendran, Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans, J. Hazard. Mater., 156 (2008) 102–107.
  27. E. Karwowska, D. Andrzejewska-Morzuch, Bioługowanie metali ciężkich z odpadów pogalwanicznych przy neutralnym pH środowiska, w obecności bakterii produkujących biosurfaktanty (Bioleaching of heavy metals from electroplating waste at a neutral pH of the environment, in the presence of bacteria producing biosurfactants), Rocznik Ochrony Środowiska, 14 (2012) 597–606.