References
- H.B. Malidareh, A.H. Mahvi, M. Yunesian, M. Alimohammadi,
S. Nazmara, Effect of fertilizer application on paddy soil
heavy metals concentration and groundwater in North of Iran,
Middle East J. Sci. Res., 20 (2014) 1721–1727.
- Y.Y. Jin, Y.N. Luan, Y.C. Ning, L.Y. Wang, Effects and mechanisms
of microbial remediation of heavy metals in soil: a critical
review, Appl. Sci., 8 (2018) 1336, doi: 10.3390/app8081336.
- A. Gałązka, Zanieczyszczenia gleb substancjami ropopochodnymi
z uwzględnieniem biologicznych metod ich
oczyszczenia (Soil contamination with petroleum substances,
taking into account biological methods of their purification),
Kosmos, 64 (2015) 145–164.
- A. Ociepa-Kubicka, E. Ociepa, Toksyczne oddziaływanie metali
ciężkich na rośliny, zwierzęta i ludzi. Inżynieria i Ochrona
Środowiska (Toxic effect of heavy metals on plants, animals and
people), 15 (2012) 169–180.
- Q.-R. Wang, Y.-S. Cui, X.-M. Liu, Y.-T. Dong, P. Christie,
Soil contamination and plant uptake of heavy metals at polluted
sites in China, J. Environ. Sci. Health. Part A Toxic/Hazard.
Subst. Environ. Eng., 38 (2003) 823–838.
- M. Pueyo, J.F. López-Sánchez, G. Rauret, Assessment of CaCl2,
NaNO3 and NH4NO3 extraction procedures for the study of Cd,
Cu, Pb and Zn extractability in contaminated soils, Anal. Chim.
Acta, 504 (2004) 217–225.
- Agency for Toxic Substances and Disease Registry (ATSDR).
Available at: https://www.atsdr.cdc.gov/spl
- A. Kaczyńska, M. Zajączkowski, M. Grzybiak, Toksyczny
wpływ kadmu na rośliny i człowieka, Ann. Acad Med Gedan
(Toxic effect of cadmium on plants and humans), 45 (2015)
65–70.
- K.B. Chipasa, Accumulation and fate of selected heavy metals
in a biological wastewater treatment system, Waste Manage.,
23 (2003) 135–143.
- K. Chojnacka, A. Chojnacki, H. Górecka, H. Górecki,
Bioavailability of heavy metals from polluted soils to plants,
Sci. Total Environ., 337 (2005) 175–182.
- Regulation of the Minister of the Environment of September
1, 2016 on Methods of Earth Diagnostics.
- R.M. Karakagh, M. Chorom, H. Motamedi, Y.K. Kalkhajeh,
S. Oustan, Biosorption of Cd and Ni by inactivated bacteria
isolated from agricultural soil treated with sewage sludge,
Ecohydrol. Hydrobiol., 12 (2012) 191–198.
- V. Achal, D. Kumari, X.L. Pan, Bioremediation of chromium
contaminated soil by a brown-rot fungus, Gloeophyllum
sepiarium, Res. J. Microbiol., 6 (2011) 166–171.
- D. Shikha, P.K. Singh, In situ phytoremediation of heavy
metal–contaminated soil and groundwater: a green inventive
approach, Environ. Sci. Pollut. Res. Int., 28 (2021) 4104–4124.
- C. Cameselle, S. Gouveia, Phytoremediation of mixed
contaminated soil enhanced with electric current, J. Hazard.
Mater., 361 (2019) 95–102.
- E. Karwowska, D. Andrzejewska-Morzucha, M. Łebkowska,
A. Tabernacka, M. Wojtkowska, A. Telepko, A. Konarzewska,
Bioleaching of metals from printed circuit boards supported
with surfactant-producing bacteria, J. Hazard. Mater.,
264 (2014) 203–210.
- A. Schippers, Biogeochemistry of Metal Sulfide Oxidation in
Mining Environments, Sediments and Soils, Biogeochemistry
– Past and Present, Special Paper, 379, Geological Society of
America, Boulder, Colorado, USA, 2004, pp. 49–62.
- H. Garg, N. Nagar, A. Dash, C.S. Gahan, Efficiency assessment
of pure Fe oxidizing microorganisms in iron supplemented
and non-supplemented medium and pure S oxidizing
microorganisms for bioleaching of mobile phone printed circuit
boards, Biosci. Biotechnol. Res. Commun.,12 (2019) 425–434.
- M.A. Diaz, I.U. De Ranson, B. Dorta, I.M. Banat, M.L. Blazquez,
F. Gonzalez, J.A. Muñoz, A. Ballester, Metal removal from
contaminated soils through bioleaching with oxidizing bacteria
and rhamnolipid biosurfactants, Soil Sediment Contam.,
24 (2015) 16–29.
- G. Girma, Microbial bioremediation of some heavy metals
in soils: an updated review, Egypt. Acad. J. Biol. Sci.
(G. Microbiol.), 7 (2015) 29–45.
- Y. Deng, X.D. Liu, H.W. Liu, H.D. Jiang, L.F. Xu, Y.H. Xiao,
H.Q. Yin Y.L. Liang, Bioleaching of cadmium from contaminated
paddy fields by consortium of autotrophic and indigenous
cadmium-tolerant bacteria, Solid State Phenom., 262 (2017)
617–621.
- D.A. Andrzejewska-Górecka, A. Poniatowska, B. Macherzynski,
D. Wojewódka, M.E. Wszelaka-Rylik, Comparison of the
effectiveness of biological and chemical leaching of copper,
nickel and zinc from circuit boards, J. Ecol. Eng., 20 (2019)
62–69.
- W. Sajjad, G. Zheng, G. Din, X.X. Ma, M. Rafiq, W. Xu,
Metals extraction from sulfide ores with microorganisms: the
bioleaching technology and recent developments, Trans. Indian
Inst. Met., 72 (2019) 559–579.
- T.-J. Xu, Y.-P. Ting, Optimization on bioleaching of incinerator
fly ash by Aspergillus niger – use of central composite design,
Enzyme Microb. Technol., 35 (2004) 444–454.
- Z.H. Guo, L. Zhang, X. Cheng, X.Y. Xiao, F.K. Pan, K.Q. Jiang,
Effects of pH, pulp density and particle size on solubilization of
metals from a Pb/Zn smelting slag using indigenous moderate
thermophilic bacteria, Hydrometallurgy, 104 (2010) 25–31.
- R. Nareshkumar, R. Nagendran, Changes in nutrient profile
of soil subjected to bioleaching for removal of heavy metals
using Acidithiobacillus thiooxidans, J. Hazard. Mater., 156 (2008)
102–107.
- E. Karwowska, D. Andrzejewska-Morzuch, Bioługowanie
metali ciężkich z odpadów pogalwanicznych przy neutralnym
pH środowiska, w obecności bakterii produkujących
biosurfaktanty (Bioleaching of heavy metals from electroplating
waste at a neutral pH of the environment, in the presence
of bacteria producing biosurfactants), Rocznik Ochrony
Środowiska, 14 (2012) 597–606.