References
- F. Hernández-del-Olmo, E. Gaudioso, R. Dormido, N. Duro,
Energy and environmental efficiency for the n-ammonia
removal process in wastewater treatment plants by means of
reinforcement learning, Energies, 9 (2016) 755, doi: 10.3390/
en9090755.
- Z.J. Zhang, A. Kusiak, Y.H. Zeng, X.P. Wei, Modeling and
optimization of a wastewater pumping system with datamining
methods, Appl. Energy, 164 (2016) 303–311.
- D. Torregrossa, J. Hansen, F. Hernández-Sancho, A. Cornelissen,
G. Schutz, U. Leopold, A data-driven methodology to support
pump performance analysis and energy efficiency optimization
in wastewater treatment plants, Appl. Energy, 208 (2017)
1430–1440.
- J.-J. Zhu, L. Kang, P.R. Anderson, Predicting influent
biochemical oxygen demand: balancing energy demand and
risk management, Water Res., 128 (2018) 304–313.
- T.Y. Pai, P.Y. Yang, S.C. Wang, M.H. Lo, C.F. Chiang, J.L. Kuo,
H.H. Chu, H.C. Su, L.F. Yu, H.C. Hu, Y.H. Chang, Predicting
effluent from the wastewater treatment plant of industrial
park based on fuzzy network and influent quality, Appl. Math.
Modell., 35 (2011) 3674–3684.
- H. Guo, K. Jeong, J. Lim, J. Jo, Y.M. Kim, J. Pyo Park, J.H. Kim,
K.H. Cho, Prediction of effluent concentration in a wastewater
treatment plant using machine learning models, J. Environ. Sci.
(China), 32 (2015) 90–101.
- X. Liu, Y. Chen, H. Ge, P. Fazio, G. Chen, Numerical
investigation for thermal performance of exterior walls of
residential buildings with moisture transfer in hot summer and
cold winter zone of China, Energy Build., 93 (2015) 259–268.
- K. Gibert, J. Izquierdo, M. Sànchez-Marrè, S.H. Hamilton,
I. Rodríguez-Roda, G. Holmes, Which method to use? an
assessment of data mining methods in Environmental Data
Science, Environ. Modell. Software, 110 (2018) 3–27.
- F. Harrou, A. Dairi, Y. Sun, M. Senouci, Statistical monitoring of
a wastewater treatment plant: a case study, J. Environ. Manage.,
223 (2018) 807–814.
- B. Khalil, J. Adamowski, A. Abdin, A. Elsaadi, A statistical
approach for the estimation of water quality characteristics of
ungauged streams/watersheds under stationary conditions,
J. Hydrol., 569 (2019) 106–116.
- J.J. Lee, C.S. Jang, C.W. Liu, C.P. Liang, S.W. Wang, Determining
the probability of arsenic in groundwater using a parsimonious
model, Environ. Sci. Technol., 43 (2009) 6662–6668.
- X. Wang, H. Ratnaweera, J.A. Holm, V. Olsbu, Statistical
monitoring and dynamic simulation of a wastewater treatment
plant: a combined approach to achieve model predictive
control, J. Environ. Manage., 193 (2017) 1–7.
- A. Kusiak, X. Wei, Prediction of methane production in
wastewater treatment facility: a data-mining approach,
Ann. Oper. Res., 216 (2014) 71–81.
- A. Asadi, A. Verma, K. Yang, B. Mejabi, Wastewater treatment
aeration process optimization: a data mining approach,
J. Environ. Manage., 203 (2017) 630–639.
- R. Avila, B. Horn, E. Moriarty, R. Hodson, E. Moltchanova,
Evaluating statistical model performance in water quality
prediction, J. Environ. Manage., 206 (2018) 910–919.
- S. Yamijala, S.D. Guikema, K. Brumbelow, Statistical models
for the analysis of water distribution system pipe break data,
Reliab. Eng. Syst. Saf., 94 (2009) 282–293.
- Y. Kleiner, B. Rajani, Comparison of four models to rank failure
likelihood of individual pipes, J. Hydroinf., 14 (2012) 659–681.
- A. Robles-Velasco, P. Cortés, J. Muñuzuri, L. Onieva, Prediction
of pipe failures in water supply networks using logistic
regression and support vector classification, Reliab. Eng. Syst.
Saf., 196 (2020) 106754, doi: 10.1016/j.ress.2019.106754.
- W. Thoe, M. Gold, A. Griesbach, M. Grimmer, M.L. Taggart,
A.B. Boehm, Predicting water quality at Santa Monica Beach:
evaluation of five different models for public notification of
unsafe swimming conditions, Water Res., 67 (2014) 105–117.
- T.K. Saha, S. Pal, Exploring physical wetland vulnerability
of Atreyee river basin in India and Bangladesh using logistic
regression and fuzzy logic approaches, Ecol. Indic., 98 (2019)
251–265.
- N.K.C. Twarakavi, J.J. Kaluarachchi, Aquifer vulnerability
assessment to heavy metals using ordinal logistic regression,
Ground Water, 43 (2005) 200–214.
- E. Dogan, A. Ates, E.C. Yilmaz, B. Eren, Application of artificial
neural networks to estimate wastewater treatment plant inlet
biochemical oxygen demand, Environ. Prog., 27 (2008) 439–446.
- B. Szeląg, K. Barbusiński, J. Studziński, Application of the
model of sludge volume index forecasting to assess reliability
and improvement of wastewater treatment plant operating
conditions, Desal. Water Treat., 140 (2019) 143–154.
- A. Verma, X. Wei, A. Kusiak, Predicting the total suspended
solids in wastewater: a data-mining approach, Eng. Appl. Artif.
Intell., 26 (2013) 1366–1372.
- A. Mair, A.I. El-Kadi, Logistic regression modeling to assess
groundwater vulnerability to contamination in Hawaii, USA, J.
Contam. Hydrol., 153 (2013) 1–23.
- M.C. Maniquiz, S. Lee, L.H. Kim, Multiple linear regression
models of urban runoff pollutant load and event mean
concentration considering rainfall variables, J. Environ. Sci.,
22 (2010) 946–952.
- S. Dreiseitl, L. Ohno-Machado, Logistic regression and artificial
neural network classification models: a methodology review,
J. Biomed. Inf., 35 (2002) 352–359.
- W. Yoo, B.A. Ference, M.L. Cote, A. Schwartz, A comparison
of logistic regression, logic regression, classification tree,
and random forests to identify effective gene-gene and geneenvironmental
interactions, Int. J. Appl. Sci. Technol., 2 (2012)
268.
- Y. Lee, J.A. Nelder, Y. Pawitan, Generalized Linear Models with
Random Effects, Chapman and Hall/CRC, 2018.
- A. Witteveen, G.F. Nane, I.M.H. Vliegen, S. Siesling,
M.J. IJzerman, Comparison of logistic regression and bayesian
networks for risk prediction of breast cancer recurrence,
Med. Decis. Mak., 38 (2018) 822–833.
- B. Peeters, R. Dewil, I.Y. Smets, Improved process control of an
industrial sludge centrifuge-dryer installation through binary
logistic regression modeling of the fouling issues, J. Process
Control, 22 (2012) 1387–1396.
- N. Deepnarain, S. Kumari, J. Ramjith, F.M. Swalaha, V. Tandoi,
K. Pillay, F. Bux, A logistic model for the remediation of
filamentous bulking in a biological nutrient removal wastewater
treatment plant, Water Sci. Technol., 72 (2015) 391–405.
- B. Szeląg, K. Barbusiński, J. Studziński, Activated sludge
process modelling using selected machine learning techniques,
Desal. Water Treat., 117 (2018) 78–87.
- B. Szelag, R. Suligowski, J. Studziński, F. De Paola, Application
of logistic regression to simulate the influence of rainfall
genesis on storm overflow operations: a probabilistic approach,
Hydrol. Earth Syst. Sci., 24 (2020) 595–614.
- Y.P. Lin, B.Y. Cheng, H.J. Chu, T.K. Chang, H.L. Yu, Assessing
how heavy metal pollution and human activity are related
by using logistic regression and kriging methods, Geoderma,
163 (2011) 275–282.
- B. Petersen, K. Gernaey, M. Henze, P.A. Vanrolleghem,
Evaluation of an ASM1 model calibration procedure on a
municipal-industrial wastewater treatment plant, J. Hydroinf.,
4 (2002) 15–38.
- F.E. Harrell, Regression Modeling Strategies, Springer
International Publishing, Cham, 2015.
- B. Szeląg, J. Drewnowski, G. Łagód, D. Majerek, E. Dacewicz,
F. Fatone, Soft sensor application in identification of the
activated sludge bulking considering the technological and
economical aspects of smart systems functioning, Sensors
(Switzerland), 20 (2020) 1941, doi: 10.3390/s20071941.
- L. Zou, H. Li, S. Wang, K. Zheng, Y. Wang, G. Du, J. Li,
Characteristic and correlation analysis of influent and energy
consumption of wastewater treatment plants in Taihu Basin,
Front. Environ. Sci. Eng., 13 (2019) 83.
- M. Kim, Y. Kim, H. Kim, W. Piao, C. Kim, Evaluation of
the k-nearest neighbor method for forecasting the influent
characteristics of wastewater treatment plant, Front. Environ.
Sci. Eng., 10 (2016) 299–310.
- M. Ebrahimi, E.L. Gerber, T.D. Rockaway, Temporal
performance assessment of wastewater treatment plants by
using multivariate statistical analysis, J. Environ. Manage.,
193 (2017) 234–246.
- G. Langergraber, J. Alex, N. Weissenbacher, D. Woerner,
M. Ahnert, T. Frehmann, N. Halft, L. Hobus, M. Plattes,
V. Spering, S. Winkler, Generation of diurnal variation for
influent data for dynamic simulation, Water Sci. Technol.,
57 (2008) 1483–1486.
- X. Wang, K. Kvaal, H. Ratnaweera, Characterization of influent
wastewater with periodic variation and snow melting effect in
cold climate area, Comput. Chem. Eng., 106 (2017) 202–211.
- M. Ansari, F. Othman, A. El-Shafie, Optimized fuzzy
inference system to enhance prediction accuracy for influent
characteristics of a sewage treatment plant, Sci. Total Environ.,
722 (2020) 137878, doi: 10.1016/j.scitotenv.2020.137878.
- M. Ahnert, C. Marx, P. Krebs, V. Kuehn, A black-box model for
generation of site-specific WWTP influent quality data based on
plant routine data, Water Sci. Technol., 74 (2016) 2978–2986.
- D. Rousseau, F. Verdonck, O. Moerman, R. Carrette, C. Thoeye,
J. Meirlaen, P.A. Vanrolleghem, Development of a risk
assessment based technique for design/retrofitting of WWTPs,
Water Sci. Technol., 43 (2001) 287–294.
- Y. Sun, Z. Chen, G. Wu, Q. Wu, F. Zhang, Z. Niu, H.Y. Hu,
Characteristics of water quality of municipal wastewater
treatment plants in China: Implications for resources utilization
and management, J. Cleaner Prod., 131 (2016) 1–9.