References

  1. D.L. Pratt, T.A. Fonstad, Geochemical modelling of livestock mortality leachate transport through the subsurface, Biosyst. Eng., 162 (2017) 67–80.
  2. S.J. Lim, T.-H. Kim, Combined treatment of swine wastewater by electron beam irradiation and ion-exchange biological reactor system, Sep. Purif. Technol., 146 (2015) 42–49.
  3. J. Otte, D. Roland-Holst, D. Pfeiffer, R. Soares-Magalhães, J. Rushton, J. Graham, E. Silbergeld, Industrial Livestock Production and Global Health Risks, Food and Agriculture Organization of the United Nations, Pro-Poor Livestock Policy Initiative Research Report, Italy, 2007.
  4. National Bureau of Statistics of China, First National Census of Pollution Sources, China, 2010. Available at: http://www.stats. gov.cn/tjsj/tjgb/qttjgb/qgqttjgb/201002/t20100211_30641.html
  5. A. Moses, P. Tomaselli, Industrial Animal Agriculture in the United States: Concentrated Animal Feeding Operations (CAFOs), G. Steier, K. Patel, Eds., International Farm Animal, Wildlife and Food Safety Law, Springer, Cham, 2017, pp. 185–214.
  6. M.B. Vanotti, P.J. Dube, A.A. Szogi, M.C. García-González, Recovery of ammonia and phosphate minerals from swine wastewater using gas-permeable membranes, Water Res., 112 (2017) 137–146.
  7. S. Daguerre-Martini, M.B. Vanotti, M. Rodriguez-Pastor, A. Rosal, R. Moral, Nitrogen recovery from wastewater using gas-permeable membranes: impact of inorganic carbon content and natural organic matter, Water Res., 137 (2018) 201–210.
  8. J.-C. Lee, K. Baek, H.-W. Kim, Semi-continuous operation and fouling characteristics of submerged membrane photobioreactor (SMPBR) for tertiary treatment of livestock wastewater, J. Cleaner Prod., 180 (2018) 244–251.
  9. J. Zhu, Z. Zhang, C. Miller, A laboratory scale sequencing batch reactor with the addition of acetate to remove nutrient and organic matter in pig slurry, Biosyst. Eng., 93 (2006) 437–446.
  10. A. Dordio, A.J.P. Carvalho, Constructed wetlands with light expanded clay aggregates for agricultural wastewater treatment, Sci. Total Environ., 463 (2013) 454–461.
  11. M.Z. Wang, Y. Yang, Z.H. Chen, Y.Z. Chen, Y.M. Wen, B.L. Chen, Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae, Bioresour. Technol., 222 (2016) 130–138.
  12. P. Choudhary, S.K. Prajapati, A. Malik, Screening native microalgal consortia for biomass production and nutrient removal from rural wastewaters for bioenergy applications, Ecol. Eng., 91 (2016) 221–230.
  13. J. Meng, J.L. Li, J.Z. Li, P. Antwi, K.W. Deng, J. Nan, P.P. Xu, Enhanced nitrogen removal from piggery wastewater with high NH4+ and low COD/TN ratio in a novel up flow microaerobic biofilm reactor, Bioresour. Technol., 249 (2018) 935–942.
  14. Q. He, X. Peng, Z. Li, The treatment of animal manure wastewater by coupled simultaneous methanogenesis and denitrification (SMD) and shortcut nitrification–denitrification (SND), J. Chem. Technol. Biotechnol., 89 (2015) 1697–1704.
  15. N.H. Tran, H.H. Ngo, T. Urase, K.Y.H. Gin, A critical review on characterization strategies of organic matter for wastewater and water treatment processes, Bioresour. Technol., 193 (2015) 523–533.
  16. K.T. Ravndal, E. Opsahl, A. Bagi, R. Kommedal, Wastewater characterization by combining size fractionation, chemical composition and biodegradability, Water Res., 131 (2018) 151–160.
  17. T. Inaba, T. Hori, R.R. Navarro, A. Ogata, D. Hanajima, H. Habe, Revealing sludge and biofilm microbiomes in membrane bioreactor treating piggery wastewater by nondestructive microscopy and 16S rRNA gene sequencing, Chem. Eng. J., 331 (2018) 75–83.
  18. Ö. Karahan, S. Dogruel, E. Dulekgurgen, D. Orhon, COD fractionation of tannery wastewaters - particle size distribution, biodegradability and modeling, Water Res, 42 (2008) 1083–1092.
  19. S.L. Low, S.L. Ong, H.Y. Ng, Characterization of membrane fouling in submerged ceramic membrane photobioreactors fed with effluent from membrane bioreactors, Chem. Eng. J., 290 (2016) 91–102.
  20. F.C. Zhao, H.Q. Chu, Z.J. Yu, S.H. Jiang, X.H. Zhao, X.F. Zhou, Y.L Zhang, The filtration and fouling performance of membranes with different pore sizes in algae harvesting, Sci. Total Environ., 587 (2017) 87–93.
  21. E. Dulekgurgen, S. Doğruel, Ö. Karahan, D. Orhon, Size distribution of wastewater COD fractions as an index for biodegradability, Water Res., 40 (2006) 273–282.
  22. X.Q. Jia, D.Y. Jin, C. Li, W.Y. Lu, Characterization and analysis of petrochemical wastewater through particle size distribution, biodegradability, and chemical composition, Chin. J. Chem. Eng., 27 (2019) 444–451
  23. M.H. Huang, Y.M. Li, G.W. Gu, Chemical composition of organic matters in domestic wastewater, Desalination, 262 (2010) 36–42.
  24. Q.W. Sui, C. Jiang, J.Y. Zhang, D.W. Yu, M.X. Chen, Y.W. Wang, Y.S. Wei, Does the biological treatment or membrane separation reduce the antibiotic resistance genes from swine wastewater through a sequencing-batch membrane bioreactor treatment process, Environ. Int., 118 (2018) 274–281.
  25. R. Suto, C. Ishimoto, M. Chikyu, Y. Aihara, T. Matsumoto, H. Uenishi, T. Yasuda, Y. Fukumoto, M. Waki, Anammox biofilm in activated sludge swine wastewater treatment plants, Chemosphere, 167 (2017) 300–307.
  26. Z.L. Ye, S.H. Chen, S.M. Wang, L.F. Lin, Y.J. Yan, Z.J. Zhang, J.S. Chen, Phosphorus recovery from synthetic swine wastewater by chemical precipitation using response surface methodology, J. Hazard. Mater., 176 (2010) 1083–1088.
  27. C. Sophonsiri, E. Morgenroth, Chemical composition associated with different particle size fractions in municipal, industrial, and agricultural wastewaters, Chemosphere, 55 (2004) 691–703.
  28. Y.B. Li, X. Wang, J.X. Liu, Occurrence characteristics of organic components in domestic sewage in terms of particle size distribution, Environ. Chem., 34 (2015) 2153–2161.
  29. A. Luo, J. Zhu, P.M. Ndegwa, Removal of carbon, nitrogen and phosphorus in pig manure by continuous and intermittent aeration at low redox potentials, Biosyst. Eng., 82 (2002) 209–215.
  30. K. Yetilmezsoy, Z. Sapci-Zengin, Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer, J. Hazard. Mater., 166 (2009) 260–269.
  31. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J.J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem., 193 (1951) 265–275.
  32. X.J. Guo, X.S. He, H. Zhang, Y. Deng, L. Chen, J.Y. Jiang, Characterization of dissolved organic matter extracted from fermentation effluent of swine manure slurry using spectroscopic techniques and parallel factor analysis (PARAFAC), Microchem. J., 102 (2012) 115–122.
  33. L. Zhu, H.Y. Qi, M.L. Lv, Y. Kong, Y.W. Yu, X.Y. Xu, Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies, Bioresour. Technol., 124 (2012) 455–459.
  34. J. Martín, D. Camacho-Muñoz, J.L. Santos, I. Aparicio, E. Alonso, Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal, J. Hazard. Mater., 239 (2012) 40–47.
  35. R. Gori, L.M. Jiang, R. Sobhani, D. Rosso, Effects of soluble and particulate substrate on the carbon and energy footprint of wastewater treatment processes, Water Res., 45 (2011) 5858–5872.
  36. J. Wu, G. Yan, G.J. Zhou, T. Xu, Wastewater COD biodegradability fractionated by simple physical–chemical analysis, Chem. Eng. J., 258 (2014) 450–459.
  37. J. Chen, Y.S. Liu, J.N. Zhang, Y.Q. Yang, L.X. Hu, Y.Y. Yang, J.L. Zhao, F.R. Chen, G.G. Ying, Removal of antibiotics from piggery wastewater by biological aerated filter system: treatment efficiency and biodegradation kinetics, Bioresour. Technol., 238 (2017) 70–77.
  38. I. Michael-Kordatou, C. Michael, X. Duan, X. He, D.D. Dionysiou, M.A. Mills, D. Fatta-Kassinos, Dissolved effluent organic matter: characteristics and potential implications in wastewater treatment and reuse applications, Water Res., 77 (2015) 213–248.
  39. Z.W. Wang, Z.C. Wu, X. Yin, L.M. Tian, Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: membrane foulant and gel layer characterization, J. Membr. Sci., 325 (2008) 238–244.
  40. W.S. Guo, H.H. Ngo, J.X. Li, A mini-review on membrane fouling, Bioresour. Technol., 122 (2012) 27–34.
  41. F.G. Meng, S.R. Chae, A. Drews, M. Kraume, H.S. Shin, F.L. Yang, Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material, Water Res., 43 (2009) 1489–1512.
  42. L. Defrance, M.Y. Jaffrin, B. Gupta, P. Paullier, V. Geaugey, Contribution of various constituents of activated sludge to membrane bioreactor fouling, Bioresour. Technol., 73 (2000) 105–112.
  43. Q.V. Ly, L.D. Nghiem, M. Sibag, T. Maqbool, J. Hur, Effects of COD/N ratio on soluble microbial products in effluent from sequencing batch reactors and subsequent membrane fouling, Water Res., 134 (2018) 13–21.
  44. N.O. Nelson, R.L. Mikkelsen, D.L. Hesterberg, Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg: P ratio and determination of rate constant, Bioresour. Technol., 89 (2003) 229–236.
  45. T. Cai, S.Y. Park, Y.B. Li, Nutrient recovery from wastewater streams by microalgae: Status and prospects, Renewable Sustainable Energy Rev., 19 (2013) 360–369.
  46. R.T. Burns, L.B. Moody, F.R. Walker, D.R. Raman, Laboratory and in-situ reductions of soluble phosphorus in swine waste slurries, Environ. Technol., 22 (2001) 1273–1278.
  47. H.M. Huang, D. Xiao, R. Pang, C.C. Han, L. Ding, Simultaneous removal of nutrients from simulated swine wastewater by adsorption of modified zeolite combined with struvite crystallization, Chem. Eng. J., 256 (2014) 431–438.
  48. C. Choi, J. Lee, K. Lee, M. Kim, The effects on operation conditions of sludge retention time and carbon/nitrogen ratio in an intermittently aerated membrane bioreactor (IAMBR), Bioresour. Technol., 99 (2008) 5397–5401.
  49. D.W. Templeton, L.M.L. Laurens, Nitrogen-to-protein conversion factors revisited for applications of microalgal biomass conversion to food, feed and fuel, Algal Res., 11 (2015) 359–367.
  50. A. Schievano, F. Adani, F. Tambone, G. D’imporzano, B. Scaglia, P.L. Genevini, What is the Digestate?, in: Anaerobic Digestion: Opportunity for Agriculture and Environment, Milano, Regione Lombardia, Italy, 2009.
  51. F.S. Qu, H. Liang, J.G. He, J. Ma, Z.Z. Wang, H.R. Yu, G.B. Li, Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling, Water Res., 46 (2012) 2881–2890.
  52. Coble, P.G, Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy, Mar. Chem., 51 (1996) 325–346.
  53. J. Świetlik, E. Sikorska, Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone, Water Res., 38 (2004) 3791–3799.
  54. Y.L. Zhang, E.L. Zhang, Y. Yin, M.A.V. Dijk, L.Q. Feng, Z.Q. Shi, M.L. Liu, B.Q. Qin, Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude, Limnol. Oceanogr., 55 (2010) 2645–2659.
  55. C.A. Stedmon, S. Markager, R. Bro, Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy, Mar. Chem., 82 (2003) 239–254.
  56. S. Determann, J.M. Lobbes, R. Reuter, J. Rullkötter, Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria, Mar. Chem., 62 (1998) 137–156.